/************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Decoder main module - * * This program is an implementation of a part of one or more MPEG-4 * Video tools as specified in ISO/IEC 14496-2 standard. Those intending * to use this software module in hardware or software products are * advised that its use may infringe existing patents or copyrights, and * any such use would be at such party's own risk. The original * developer of this software module and his/her company, and subsequent * editors and their companies, will have no liability for use of this * software or modifications or derivatives thereof. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *************************************************************************/ /************************************************************************** * * History: * * 22.04.2002 add some B-frame decode support; chenm001 * 29.03.2002 interlacing fix - compensated block wasn't being used when * reconstructing blocks, thus artifacts * interlacing speedup - used transfers to re-interlace * interlaced decoding should be as fast as progressive now * 26.03.2002 interlacing support - moved transfers outside decode loop * 26.12.2001 decoder_mbinter: dequant/idct moved within if(coded) block * 22.12.2001 lock based interpolation * 01.12.2001 inital version; (c)2001 peter ross * * $Id: decoder.c,v 1.13 2002/04/28 23:35:25 edgomez Exp $ * *************************************************************************/ #include #include #include "xvid.h" #include "portab.h" #include "decoder.h" #include "bitstream/bitstream.h" #include "bitstream/mbcoding.h" #include "quant/quant_h263.h" #include "quant/quant_mpeg4.h" #include "dct/idct.h" #include "dct/fdct.h" #include "utils/mem_transfer.h" #include "image/interpolate8x8.h" #include "bitstream/mbcoding.h" #include "prediction/mbprediction.h" #include "utils/timer.h" #include "utils/emms.h" #include "image/image.h" #include "image/colorspace.h" #include "utils/mem_align.h" int decoder_create(XVID_DEC_PARAM * param) { DECODER * dec; dec = xvid_malloc(sizeof(DECODER), CACHE_LINE); if (dec == NULL) { return XVID_ERR_MEMORY; } param->handle = dec; dec->width = param->width; dec->height = param->height; dec->mb_width = (dec->width + 15) / 16; dec->mb_height = (dec->height + 15) / 16; dec->edged_width = 16 * dec->mb_width + 2 * EDGE_SIZE; dec->edged_height = 16 * dec->mb_height + 2 * EDGE_SIZE; if (image_create(&dec->cur, dec->edged_width, dec->edged_height)) { xvid_free(dec); return XVID_ERR_MEMORY; } if (image_create(&dec->refn[0], dec->edged_width, dec->edged_height)) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } // add by chenm001 // for support B-frame to reference last 2 frame if (image_create(&dec->refn[1], dec->edged_width, dec->edged_height)) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } dec->mbs = xvid_malloc(sizeof(MACROBLOCK) * dec->mb_width * dec->mb_height, CACHE_LINE); if (dec->mbs == NULL) { image_destroy(&dec->cur, dec->edged_width, dec->edged_height); xvid_free(dec); return XVID_ERR_MEMORY; } init_timer(); return XVID_ERR_OK; } int decoder_destroy(DECODER * dec) { xvid_free(dec->mbs); image_destroy(&dec->refn[0], dec->edged_width, dec->edged_height); image_destroy(&dec->cur, dec->edged_width, dec->edged_height); xvid_free(dec); write_timer(); return XVID_ERR_OK; } static const int32_t dquant_table[4] = { -1, -2, 1, 2 }; // decode an intra macroblock void decoder_mbintra(DECODER * dec, MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, const uint32_t acpred_flag, const uint32_t cbp, Bitstream * bs, const uint32_t quant, const uint32_t intra_dc_threshold) { DECLARE_ALIGNED_MATRIX(block, 6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); uint32_t stride = dec->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t i; uint32_t iQuant = pMB->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); memset(block, 0, 6*64*sizeof(int16_t)); // clear for (i = 0; i < 6; i++) { uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4); int16_t predictors[8]; int start_coeff; start_timer(); predict_acdc(dec->mbs, x_pos, y_pos, dec->mb_width, i, &block[i*64], iQuant, iDcScaler, predictors); if (!acpred_flag) { pMB->acpred_directions[i] = 0; } stop_prediction_timer(); if (quant < intra_dc_threshold) { int dc_size; int dc_dif; dc_size = i < 4 ? get_dc_size_lum(bs) : get_dc_size_chrom(bs); dc_dif = dc_size ? get_dc_dif(bs, dc_size) : 0 ; if (dc_size > 8) { BitstreamSkip(bs, 1); // marker } block[i*64 + 0] = dc_dif; start_coeff = 1; } else { start_coeff = 0; } start_timer(); if (cbp & (1 << (5-i))) // coded { get_intra_block(bs, &block[i*64], pMB->acpred_directions[i], start_coeff); } stop_coding_timer(); start_timer(); add_acdc(pMB, i, &block[i*64], iDcScaler, predictors); stop_prediction_timer(); start_timer(); if (dec->quant_type == 0) { dequant_intra(&data[i*64], &block[i*64], iQuant, iDcScaler); } else { dequant4_intra(&data[i*64], &block[i*64], iQuant, iDcScaler); } stop_iquant_timer(); start_timer(); idct(&data[i*64]); stop_idct_timer(); } if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); transfer_16to8copy(pY_Cur, &data[0*64], stride); transfer_16to8copy(pY_Cur + 8, &data[1*64], stride); transfer_16to8copy(pY_Cur + next_block, &data[2*64], stride); transfer_16to8copy(pY_Cur + 8 + next_block, &data[3*64], stride); transfer_16to8copy(pU_Cur, &data[4*64], stride2); transfer_16to8copy(pV_Cur, &data[5*64], stride2); stop_transfer_timer(); } #define SIGN(X) (((X)>0)?1:-1) #define ABS(X) (((X)>0)?(X):-(X)) static const uint32_t roundtab[16] = { 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 }; // decode an inter macroblock void decoder_mbinter(DECODER * dec, const MACROBLOCK * pMB, const uint32_t x_pos, const uint32_t y_pos, const uint32_t acpred_flag, const uint32_t cbp, Bitstream * bs, const uint32_t quant, const uint32_t rounding) { DECLARE_ALIGNED_MATRIX(block,6, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(data, 6, 64, int16_t, CACHE_LINE); uint32_t stride = dec->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; uint32_t i; uint32_t iQuant = pMB->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; int uv_dx, uv_dy; pY_Cur = dec->cur.y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = dec->cur.u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = dec->cur.v + (y_pos << 3) * stride2 + (x_pos << 3); if (pMB->mode == MODE_INTER || pMB->mode == MODE_INTER_Q) { uv_dx = pMB->mvs[0].x; uv_dy = pMB->mvs[0].y; uv_dx = (uv_dx & 3) ? (uv_dx >> 1) | 1 : uv_dx / 2; uv_dy = (uv_dy & 3) ? (uv_dy >> 1) | 1 : uv_dy / 2; } else { int sum; sum = pMB->mvs[0].x + pMB->mvs[1].x + pMB->mvs[2].x + pMB->mvs[3].x; uv_dx = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2) ); sum = pMB->mvs[0].y + pMB->mvs[1].y + pMB->mvs[2].y + pMB->mvs[3].y; uv_dy = (sum == 0 ? 0 : SIGN(sum) * (roundtab[ABS(sum) % 16] + (ABS(sum) / 16) * 2) ); } start_timer(); interpolate8x8_switch(dec->cur.y, dec->refn[0].y, 16*x_pos, 16*y_pos , pMB->mvs[0].x, pMB->mvs[0].y, stride, rounding); interpolate8x8_switch(dec->cur.y, dec->refn[0].y, 16*x_pos + 8, 16*y_pos , pMB->mvs[1].x, pMB->mvs[1].y, stride, rounding); interpolate8x8_switch(dec->cur.y, dec->refn[0].y, 16*x_pos, 16*y_pos + 8, pMB->mvs[2].x, pMB->mvs[2].y, stride, rounding); interpolate8x8_switch(dec->cur.y, dec->refn[0].y, 16*x_pos + 8, 16*y_pos + 8, pMB->mvs[3].x, pMB->mvs[3].y, stride, rounding); interpolate8x8_switch(dec->cur.u, dec->refn[0].u, 8*x_pos, 8*y_pos, uv_dx, uv_dy, stride2, rounding); interpolate8x8_switch(dec->cur.v, dec->refn[0].v, 8*x_pos, 8*y_pos, uv_dx, uv_dy, stride2, rounding); stop_comp_timer(); for (i = 0; i < 6; i++) { if (cbp & (1 << (5-i))) // coded { memset(&block[i*64], 0, 64 * sizeof(int16_t)); // clear start_timer(); get_inter_block(bs, &block[i*64]); stop_coding_timer(); start_timer(); if (dec->quant_type == 0) { dequant_inter(&data[i*64], &block[i*64], iQuant); } else { dequant4_inter(&data[i*64], &block[i*64], iQuant); } stop_iquant_timer(); start_timer(); idct(&data[i*64]); stop_idct_timer(); } } if (dec->interlacing && pMB->field_dct) { next_block = stride; stride *= 2; } start_timer(); if (cbp & 32) transfer_16to8add(pY_Cur, &data[0*64], stride); if (cbp & 16) transfer_16to8add(pY_Cur + 8, &data[1*64], stride); if (cbp & 8) transfer_16to8add(pY_Cur + next_block, &data[2*64], stride); if (cbp & 4) transfer_16to8add(pY_Cur + 8 + next_block, &data[3*64], stride); if (cbp & 2) transfer_16to8add(pU_Cur, &data[4*64], stride2); if (cbp & 1) transfer_16to8add(pV_Cur, &data[5*64], stride2); stop_transfer_timer(); } void decoder_iframe(DECODER * dec, Bitstream * bs, int quant, int intra_dc_threshold) { uint32_t x, y; for (y = 0; y < dec->mb_height; y++) { for (x = 0; x < dec->mb_width; x++) { MACROBLOCK * mb = &dec->mbs[y*dec->mb_width + x]; uint32_t mcbpc; uint32_t cbpc; uint32_t acpred_flag; uint32_t cbpy; uint32_t cbp; mcbpc = get_mcbpc_intra(bs); mb->mode = mcbpc & 7; cbpc = (mcbpc >> 4); acpred_flag = BitstreamGetBit(bs); if (mb->mode == MODE_STUFFING) { DEBUG("-- STUFFING ?"); continue; } cbpy = get_cbpy(bs, 1); cbp = (cbpy << 2) | cbpc; if (mb->mode == MODE_INTRA_Q) { quant += dquant_table[BitstreamGetBits(bs,2)]; if (quant > 31) { quant = 31; } else if (quant < 1) { quant = 1; } } mb->quant = quant; if (dec->interlacing) { mb->field_dct = BitstreamGetBit(bs); DEBUG1("deci: field_dct: ", mb->field_dct); } decoder_mbintra(dec, mb, x, y, acpred_flag, cbp, bs, quant, intra_dc_threshold); } } } void get_motion_vector(DECODER *dec, Bitstream *bs, int x, int y, int k, VECTOR * mv, int fcode) { int scale_fac = 1 << (fcode - 1); int high = (32 * scale_fac) - 1; int low = ((-32) * scale_fac); int range = (64 * scale_fac); VECTOR pmv[4]; int32_t psad[4]; int mv_x, mv_y; int pmv_x, pmv_y; get_pmvdata(dec->mbs, x, y, dec->mb_width, k, pmv, psad); pmv_x = pmv[0].x; pmv_y = pmv[0].y; mv_x = get_mv(bs, fcode); mv_y = get_mv(bs, fcode); mv_x += pmv_x; mv_y += pmv_y; if (mv_x < low) { mv_x += range; } else if (mv_x > high) { mv_x -= range; } if (mv_y < low) { mv_y += range; } else if (mv_y > high) { mv_y -= range; } mv->x = mv_x; mv->y = mv_y; } void decoder_pframe(DECODER * dec, Bitstream * bs, int rounding, int quant, int fcode, int intra_dc_threshold) { uint32_t x, y; start_timer(); image_setedges(&dec->refn[0], dec->edged_width, dec->edged_height, dec->width, dec->height, dec->interlacing); stop_edges_timer(); for (y = 0; y < dec->mb_height; y++) { for (x = 0; x < dec->mb_width; x++) { MACROBLOCK * mb = &dec->mbs[y*dec->mb_width + x]; if (!BitstreamGetBit(bs)) // not_coded { uint32_t mcbpc; uint32_t cbpc; uint32_t acpred_flag; uint32_t cbpy; uint32_t cbp; uint32_t intra; mcbpc = get_mcbpc_inter(bs); mb->mode = mcbpc & 7; cbpc = (mcbpc >> 4); acpred_flag = 0; intra = (mb->mode == MODE_INTRA || mb->mode == MODE_INTRA_Q); if (intra) { acpred_flag = BitstreamGetBit(bs); } if (mb->mode == MODE_STUFFING) { DEBUG("-- STUFFING ?"); continue; } cbpy = get_cbpy(bs, intra); cbp = (cbpy << 2) | cbpc; if (mb->mode == MODE_INTER_Q || mb->mode == MODE_INTRA_Q) { quant += dquant_table[BitstreamGetBits(bs,2)]; if (quant > 31) { quant = 31; } else if (mb->quant < 1) { quant = 1; } } mb->quant = quant; if (dec->interlacing) { mb->field_dct = BitstreamGetBit(bs); DEBUG1("decp: field_dct: ", mb->field_dct); if (mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q) { mb->field_pred = BitstreamGetBit(bs); DEBUG1("decp: field_pred: ", mb->field_pred); if (mb->field_pred) { mb->field_for_top = BitstreamGetBit(bs); DEBUG1("decp: field_for_top: ", mb->field_for_top); mb->field_for_bot = BitstreamGetBit(bs); DEBUG1("decp: field_for_bot: ", mb->field_for_bot); } } } if (mb->mode == MODE_INTER || mb->mode == MODE_INTER_Q) { if (dec->interlacing && mb->field_pred) { get_motion_vector(dec, bs, x, y, 0, &mb->mvs[0], fcode); get_motion_vector(dec, bs, x, y, 0, &mb->mvs[1], fcode); } else { get_motion_vector(dec, bs, x, y, 0, &mb->mvs[0], fcode); mb->mvs[1].x = mb->mvs[2].x = mb->mvs[3].x = mb->mvs[0].x; mb->mvs[1].y = mb->mvs[2].y = mb->mvs[3].y = mb->mvs[0].y; } } else if (mb->mode == MODE_INTER4V /* || mb->mode == MODE_INTER4V_Q */) { get_motion_vector(dec, bs, x, y, 0, &mb->mvs[0], fcode); get_motion_vector(dec, bs, x, y, 1, &mb->mvs[1], fcode); get_motion_vector(dec, bs, x, y, 2, &mb->mvs[2], fcode); get_motion_vector(dec, bs, x, y, 3, &mb->mvs[3], fcode); } else // MODE_INTRA, MODE_INTRA_Q { mb->mvs[0].x = mb->mvs[1].x = mb->mvs[2].x = mb->mvs[3].x = 0; mb->mvs[0].y = mb->mvs[1].y = mb->mvs[2].y = mb->mvs[3].y = 0; decoder_mbintra(dec, mb, x, y, acpred_flag, cbp, bs, quant, intra_dc_threshold); continue; } decoder_mbinter(dec, mb, x, y, acpred_flag, cbp, bs, quant, rounding); } else // not coded { mb->mode = MODE_NOT_CODED; mb->mvs[0].x = mb->mvs[1].x = mb->mvs[2].x = mb->mvs[3].x = 0; mb->mvs[0].y = mb->mvs[1].y = mb->mvs[2].y = mb->mvs[3].y = 0; // copy macroblock directly from ref to cur start_timer(); transfer8x8_copy(dec->cur.y + (16*y)*dec->edged_width + (16*x), dec->refn[0].y + (16*y)*dec->edged_width + (16*x), dec->edged_width); transfer8x8_copy(dec->cur.y + (16*y)*dec->edged_width + (16*x+8), dec->refn[0].y + (16*y)*dec->edged_width + (16*x+8), dec->edged_width); transfer8x8_copy(dec->cur.y + (16*y+8)*dec->edged_width + (16*x), dec->refn[0].y + (16*y+8)*dec->edged_width + (16*x), dec->edged_width); transfer8x8_copy(dec->cur.y + (16*y+8)*dec->edged_width + (16*x+8), dec->refn[0].y + (16*y+8)*dec->edged_width + (16*x+8), dec->edged_width); transfer8x8_copy(dec->cur.u + (8*y)*dec->edged_width/2 + (8*x), dec->refn[0].u + (8*y)*dec->edged_width/2 + (8*x), dec->edged_width/2); transfer8x8_copy(dec->cur.v + (8*y)*dec->edged_width/2 + (8*x), dec->refn[0].v + (8*y)*dec->edged_width/2 + (8*x), dec->edged_width/2); stop_transfer_timer(); } } } } int decoder_decode(DECODER * dec, XVID_DEC_FRAME * frame) { Bitstream bs; uint32_t rounding; uint32_t quant; uint32_t fcode; uint32_t intra_dc_threshold; uint32_t vop_type; start_global_timer(); BitstreamInit(&bs, frame->bitstream, frame->length); // add by chenm001 // for support B-frame to reference last 2 frame vop_type=BitstreamReadHeaders(&bs, dec, &rounding, &quant, &fcode, &intra_dc_threshold); if (vop_type==I_VOP || vop_type==P_VOP){ image_swap(&dec->refn[0], &dec->refn[1]); image_swap(&dec->cur, &dec->refn[0]); } switch (vop_type) { case P_VOP : decoder_pframe(dec, &bs, rounding, quant, fcode, intra_dc_threshold); break; case I_VOP : //DEBUG1("",intra_dc_threshold); decoder_iframe(dec, &bs, quant, intra_dc_threshold); break; case B_VOP : // ignore break; case N_VOP : // vop not coded break; default : return XVID_ERR_FAIL; } frame->length = BitstreamPos(&bs) / 8; start_timer(); image_output(&dec->cur, dec->width, dec->height, dec->edged_width, frame->image, frame->stride, frame->colorspace); stop_conv_timer(); emms(); stop_global_timer(); return XVID_ERR_OK; }