/***************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Motion Estimation for B-VOPs - * * Copyright(C) 2002 Christoph Lampert * 2002 Michael Militzer * 2002-2003 Radoslaw Czyz * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: estimation_bvop.c,v 1.4 2004/04/22 13:39:33 syskin Exp $ * ****************************************************************************/ #include #include #include #include /* memcpy */ #include "../encoder.h" #include "../global.h" #include "../image/interpolate8x8.h" #include "estimation.h" #include "motion.h" #include "sad.h" #include "motion_inlines.h" static int32_t ChromaSAD2(const int fx, const int fy, const int bx, const int by, SearchData * const data) { int sad; const uint32_t stride = data->iEdgedWidth/2; uint8_t *f_refu, *f_refv, *b_refu, *b_refv; int offset, filter; const INTERPOLATE8X8_PTR interpolate8x8_halfpel[] = { NULL, interpolate8x8_halfpel_v, interpolate8x8_halfpel_h, interpolate8x8_halfpel_hv }; if (data->chromaX == fx && data->chromaY == fy && data->b_chromaX == bx && data->b_chromaY == by) return data->chromaSAD; offset = (fx>>1) + (fy>>1)*stride; filter = ((fx & 1) << 1) | (fy & 1); if (filter != 0) { f_refu = data->RefQ; f_refv = data->RefQ + 8; if (data->chromaX != fx || data->chromaY != fy) { interpolate8x8_halfpel[filter](f_refu, data->RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel[filter](f_refv, data->RefP[5] + offset, stride, data->rounding); } } else { f_refu = (uint8_t*)data->RefP[4] + offset; f_refv = (uint8_t*)data->RefP[5] + offset; } data->chromaX = fx; data->chromaY = fy; offset = (bx>>1) + (by>>1)*stride; filter = ((bx & 1) << 1) | (by & 1); if (filter != 0) { b_refu = data->RefQ + 16; b_refv = data->RefQ + 24; if (data->b_chromaX != bx || data->b_chromaY != by) { interpolate8x8_halfpel[filter](b_refu, data->b_RefP[4] + offset, stride, data->rounding); interpolate8x8_halfpel[filter](b_refv, data->b_RefP[5] + offset, stride, data->rounding); } } else { b_refu = (uint8_t*)data->b_RefP[4] + offset; b_refv = (uint8_t*)data->b_RefP[5] + offset; } data->b_chromaX = bx; data->b_chromaY = by; sad = sad8bi(data->CurU, b_refu, f_refu, stride); sad += sad8bi(data->CurV, b_refv, f_refv, stride); data->chromaSAD = sad; return sad; } static void CheckCandidateInt(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad, xf, yf, xb, yb, xcf, ycf, xcb, ycb; uint32_t t; const uint8_t *ReferenceF, *ReferenceB; VECTOR *current; if ((x > data->max_dx) || (x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy)) return; if (Direction == 1) { /* x and y mean forward vector */ VECTOR backward = data->qpel_precision ? data->currentQMV[1] : data->currentMV[1]; xb = backward.x; yb = backward.y; xf = x; yf = y; } else { /* x and y mean backward vector */ VECTOR forward = data->qpel_precision ? data->currentQMV[0] : data->currentMV[0]; xf = forward.x; yf = forward.y; xb = x; yb = y; } if (!data->qpel_precision) { ReferenceF = GetReference(xf, yf, data); ReferenceB = GetReferenceB(xb, yb, 1, data); current = data->currentMV + Direction - 1; xcf = xf; ycf = yf; xcb = xb; ycb = yb; } else { ReferenceF = xvid_me_interpolate16x16qpel(xf, yf, 0, data); current = data->currentQMV + Direction - 1; ReferenceB = xvid_me_interpolate16x16qpel(xb, yb, 1, data); xcf = xf/2; ycf = yf/2; xcb = xb/2; ycb = yb/2; } t = d_mv_bits(xf, yf, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0) + d_mv_bits(xb, yb, data->bpredMV, data->iFcode, data->qpel^data->qpel_precision, 0); sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * t * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 1) + roundtab_79[xcf & 0x3], (ycf >> 1) + roundtab_79[ycf & 0x3], (xcb >> 1) + roundtab_79[xcb & 0x3], (ycb >> 1) + roundtab_79[ycb & 0x3], data); if (sad < *(data->iMinSAD)) { *data->iMinSAD = sad; current->x = x; current->y = y; data->dir = Direction; } } static void CheckCandidateDirect(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad = 0, xcf = 0, ycf = 0, xcb = 0, ycb = 0; uint32_t k; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; for (k = 0; k < 4; k++) { mvs.x = data->directmvF[k].x + x; b_mvs.x = ((x == 0) ? data->directmvB[k].x : mvs.x - data->referencemv[k].x); mvs.y = data->directmvF[k].y + y; b_mvs.y = ((y == 0) ? data->directmvB[k].y : mvs.y - data->referencemv[k].y); if ((mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf += mvs.x/2; ycf += mvs.y/2; xcb += b_mvs.x/2; ycb += b_mvs.y/2; } else { xcf += mvs.x; ycf += mvs.y; xcb += b_mvs.x; ycb += b_mvs.y; mvs.x *= 2; mvs.y *= 2; /* we move to qpel precision anyway */ b_mvs.x *= 2; b_mvs.y *= 2; } ReferenceF = xvid_me_interpolate8x8qpel(mvs.x, mvs.y, k, 0, data); ReferenceB = xvid_me_interpolate8x8qpel(b_mvs.x, b_mvs.y, k, 1, data); sad += data->iMinSAD[k+1] = sad8bi(data->Cur + 8*(k&1) + 8*(k>>1)*(data->iEdgedWidth), ReferenceF, ReferenceB, data->iEdgedWidth); if (sad > *(data->iMinSAD)) return; } sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { data->iMinSAD[0] = sad; data->currentMV->x = x; data->currentMV->y = y; data->dir = Direction; } } static void CheckCandidateDirectno4v(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad, xcf, ycf, xcb, ycb; const uint8_t *ReferenceF; const uint8_t *ReferenceB; VECTOR mvs, b_mvs; if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return; mvs.x = data->directmvF[0].x + x; b_mvs.x = ((x == 0) ? data->directmvB[0].x : mvs.x - data->referencemv[0].x); mvs.y = data->directmvF[0].y + y; b_mvs.y = ((y == 0) ? data->directmvB[0].y : mvs.y - data->referencemv[0].y); if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx) || (mvs.y > data->max_dy) || (mvs.y < data->min_dy) || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return; if (data->qpel) { xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2); xcb = 4*(b_mvs.x/2); ycb = 4*(b_mvs.y/2); ReferenceF = xvid_me_interpolate16x16qpel(mvs.x, mvs.y, 0, data); ReferenceB = xvid_me_interpolate16x16qpel(b_mvs.x, b_mvs.y, 1, data); } else { xcf = 4*mvs.x; ycf = 4*mvs.y; xcb = 4*b_mvs.x; ycb = 4*b_mvs.y; ReferenceF = GetReference(mvs.x, mvs.y, data); ReferenceB = GetReferenceB(b_mvs.x, b_mvs.y, 1, data); } sad = sad16bi(data->Cur, ReferenceF, ReferenceB, data->iEdgedWidth); sad += (data->lambda16 * d_mv_bits(x, y, zeroMV, 1, 0, 0) * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += ChromaSAD2((xcf >> 3) + roundtab_76[xcf & 0xf], (ycf >> 3) + roundtab_76[ycf & 0xf], (xcb >> 3) + roundtab_76[xcb & 0xf], (ycb >> 3) + roundtab_76[ycb & 0xf], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; data->currentMV->x = x; data->currentMV->y = y; data->dir = Direction; } } void CheckCandidate16no4v(const int x, const int y, SearchData * const data, const unsigned int Direction) { int32_t sad, xc, yc; const uint8_t * Reference; uint32_t t; VECTOR * current; if ( (x > data->max_dx) || ( x < data->min_dx) || (y > data->max_dy) || (y < data->min_dy) ) return; if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; /* non-zero even value */ if (data->qpel_precision) { /* x and y are in 1/4 precision */ Reference = xvid_me_interpolate16x16qpel(x, y, 0, data); current = data->currentQMV; xc = x/2; yc = y/2; } else { Reference = GetReference(x, y, data); current = data->currentMV; xc = x; yc = y; } t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, data->rrv); sad = sad16(data->Cur, Reference, data->iEdgedWidth, 256*4096); sad += (data->lambda16 * t * sad)>>10; if (data->chroma && sad < *data->iMinSAD) sad += xvid_me_ChromaSAD((xc >> 1) + roundtab_79[xc & 0x3], (yc >> 1) + roundtab_79[yc & 0x3], data); if (sad < *(data->iMinSAD)) { *(data->iMinSAD) = sad; current->x = x; current->y = y; data->dir = Direction; } } static __inline VECTOR ChoosePred(const MACROBLOCK * const pMB, const uint32_t mode) { /* the stupidiest function ever */ return (mode == MODE_FORWARD ? pMB->mvs[0] : pMB->b_mvs[0]); } static void __inline PreparePredictionsBF(VECTOR * const pmv, const int x, const int y, const uint32_t iWcount, const MACROBLOCK * const pMB, const uint32_t mode_curr) { /* [0] is prediction */ pmv[0].x = EVEN(pmv[0].x); pmv[0].y = EVEN(pmv[0].y); pmv[1].x = pmv[1].y = 0; /* [1] is zero */ pmv[2] = ChoosePred(pMB, mode_curr); pmv[2].x = EVEN(pmv[2].x); pmv[2].y = EVEN(pmv[2].y); if ((y != 0)&&(x != (int)(iWcount+1))) { /* [3] top-right neighbour */ pmv[3] = ChoosePred(pMB+1-iWcount, mode_curr); pmv[3].x = EVEN(pmv[3].x); pmv[3].y = EVEN(pmv[3].y); } else pmv[3].x = pmv[3].y = 0; if (y != 0) { pmv[4] = ChoosePred(pMB-iWcount, mode_curr); pmv[4].x = EVEN(pmv[4].x); pmv[4].y = EVEN(pmv[4].y); } else pmv[4].x = pmv[4].y = 0; if (x != 0) { pmv[5] = ChoosePred(pMB-1, mode_curr); pmv[5].x = EVEN(pmv[5].x); pmv[5].y = EVEN(pmv[5].y); } else pmv[5].x = pmv[5].y = 0; if (x != 0 && y != 0) { pmv[6] = ChoosePred(pMB-1-iWcount, mode_curr); pmv[6].x = EVEN(pmv[6].x); pmv[6].y = EVEN(pmv[6].y); } else pmv[6].x = pmv[6].y = 0; } /* search backward or forward */ static void SearchBF( const IMAGE * const pRef, const uint8_t * const pRefH, const uint8_t * const pRefV, const uint8_t * const pRefHV, const int x, const int y, const uint32_t MotionFlags, const uint32_t iFcode, const MBParam * const pParam, MACROBLOCK * const pMB, const VECTOR * const predMV, int32_t * const best_sad, const int32_t mode_current, SearchData * const Data) { int i; VECTOR pmv[7]; int threshA = (MotionFlags & XVID_ME_FASTREFINE16) ? 150 : 300; *Data->iMinSAD = MV_MAX_ERROR; Data->iFcode = iFcode; Data->qpel_precision = 0; Data->chromaX = Data->chromaY = Data->chromaSAD = 256*4096; /* reset chroma-sad cache */ Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16; Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16; Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16; Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16; Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8; Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8; Data->predMV = *predMV; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, iFcode - Data->qpel, 1, 0); pmv[0] = Data->predMV; if (Data->qpel) { pmv[0].x /= 2; pmv[0].y /= 2; } PreparePredictionsBF(pmv, x, y, pParam->mb_width, pMB, mode_current); Data->currentMV->x = Data->currentMV->y = 0; /* main loop. checking all predictions */ for (i = 0; i < 7; i++) if (!vector_repeats(pmv, i) ) CheckCandidate16no4v(pmv[i].x, pmv[i].y, Data, i); if (*Data->iMinSAD > 512) { unsigned int mask = make_mask(pmv, 7, Data->dir); MainSearchFunc *MainSearchPtr; if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = xvid_me_SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = xvid_me_AdvDiamondSearch; else MainSearchPtr = xvid_me_DiamondSearch; MainSearchPtr(Data->currentMV->x, Data->currentMV->y, Data, mask, CheckCandidate16no4v); } if(!Data->qpel) { /* halfpel mode */ if (MotionFlags & XVID_ME_HALFPELREFINE16) xvid_me_SubpelRefine(Data, CheckCandidate16no4v, 0); } else { /* qpel mode */ if(MotionFlags & XVID_ME_FASTREFINE16) { /* fast */ get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode, 2, 0); if (*Data->iMinSAD < *best_sad + 2*threshA) FullRefine_Fast(Data, CheckCandidate16no4v, 0); } else { Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; if(MotionFlags & XVID_ME_QUARTERPELREFINE16) { /* full */ if (MotionFlags & XVID_ME_HALFPELREFINE16) { xvid_me_SubpelRefine(Data, CheckCandidate16no4v, 0); /* hpel part */ Data->currentQMV->x = 2*Data->currentMV->x; Data->currentQMV->y = 2*Data->currentMV->y; } get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, Data->iFcode, 2, 0); Data->qpel_precision = 1; if (*Data->iMinSAD < *best_sad + threshA) xvid_me_SubpelRefine(Data, CheckCandidate16no4v, 0); /* qpel part */ } } } /* three bits are needed to code backward mode. four for forward */ if (mode_current == MODE_FORWARD) *Data->iMinSAD += 4 * Data->lambda16; else *Data->iMinSAD += 3 * Data->lambda16; if (*Data->iMinSAD < *best_sad) { *best_sad = *Data->iMinSAD; pMB->mode = mode_current; if (Data->qpel) { pMB->pmvs[0].x = Data->currentQMV->x - predMV->x; pMB->pmvs[0].y = Data->currentQMV->y - predMV->y; if (mode_current == MODE_FORWARD) pMB->qmvs[0] = *Data->currentQMV; else pMB->b_qmvs[0] = *Data->currentQMV; } else { pMB->pmvs[0].x = Data->currentMV->x - predMV->x; pMB->pmvs[0].y = Data->currentMV->y - predMV->y; } if (mode_current == MODE_FORWARD) pMB->mvs[0] = *Data->currentMV; else pMB->b_mvs[0] = *Data->currentMV; } if (mode_current == MODE_FORWARD) *(Data->currentMV+2) = *Data->currentMV; else *(Data->currentMV+1) = *Data->currentMV; /* we store currmv for interpolate search */ } static void SkipDecisionB(const IMAGE * const pCur, const IMAGE * const f_Ref, const IMAGE * const b_Ref, MACROBLOCK * const pMB, const uint32_t x, const uint32_t y, const SearchData * const Data) { int k; if (!Data->chroma) { int dx = 0, dy = 0, b_dx = 0, b_dy = 0; int32_t sum; const uint32_t stride = Data->iEdgedWidth/2; /* this is not full chroma compensation, only it's fullpel approximation. should work though */ for (k = 0; k < 4; k++) { dy += Data->directmvF[k].y >> Data->qpel; dx += Data->directmvF[k].x >> Data->qpel; b_dy += Data->directmvB[k].y >> Data->qpel; b_dx += Data->directmvB[k].x >> Data->qpel; } dy = (dy >> 3) + roundtab_76[dy & 0xf]; dx = (dx >> 3) + roundtab_76[dx & 0xf]; b_dy = (b_dy >> 3) + roundtab_76[b_dy & 0xf]; b_dx = (b_dx >> 3) + roundtab_76[b_dx & 0xf]; sum = sad8bi(pCur->u + 8 * x + 8 * y * stride, f_Ref->u + (y*8 + dy/2) * stride + x*8 + dx/2, b_Ref->u + (y*8 + b_dy/2) * stride + x*8 + b_dx/2, stride); if (sum >= MAX_CHROMA_SAD_FOR_SKIP * (int)Data->iQuant) return; /* no skip */ sum += sad8bi(pCur->v + 8*x + 8 * y * stride, f_Ref->v + (y*8 + dy/2) * stride + x*8 + dx/2, b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2, stride); if (sum >= MAX_CHROMA_SAD_FOR_SKIP * (int)Data->iQuant) return; /* no skip */ } /* skip */ pMB->mode = MODE_DIRECT_NONE_MV; /* skipped */ for (k = 0; k < 4; k++) { pMB->qmvs[k] = pMB->mvs[k] = Data->directmvF[k]; pMB->b_qmvs[k] = pMB->b_mvs[k] = Data->directmvB[k]; } } static uint32_t SearchDirect(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const IMAGE * const pCur, const int x, const int y, const uint32_t MotionFlags, const int32_t TRB, const int32_t TRD, const MBParam * const pParam, MACROBLOCK * const pMB, const MACROBLOCK * const b_mb, int32_t * const best_sad, SearchData * const Data) { int32_t skip_sad; int k = (x + Data->iEdgedWidth*y) * 16; MainSearchFunc *MainSearchPtr; CheckFunc * CheckCandidate; *Data->iMinSAD = 256*4096; Data->RefP[0] = f_Ref->y + k; Data->RefP[2] = f_RefH + k; Data->RefP[1] = f_RefV + k; Data->RefP[3] = f_RefHV + k; Data->b_RefP[0] = b_Ref->y + k; Data->b_RefP[2] = b_RefH + k; Data->b_RefP[1] = b_RefV + k; Data->b_RefP[3] = b_RefHV + k; Data->RefP[4] = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->RefP[5] = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefP[4] = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefP[5] = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; k = Data->qpel ? 4 : 2; Data->max_dx = k * (pParam->width - x * 16); Data->max_dy = k * (pParam->height - y * 16); Data->min_dx = -k * (16 + x * 16); Data->min_dy = -k * (16 + y * 16); Data->chromaX = Data->chromaY = Data->b_chromaX = Data->b_chromaY = 256*4096; Data->referencemv = Data->qpel ? b_mb->qmvs : b_mb->mvs; Data->qpel_precision = 0; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x = ((TRB * Data->referencemv[k].x) / TRD); pMB->b_mvs[k].x = Data->directmvB[k].x = ((TRB - TRD) * Data->referencemv[k].x) / TRD; pMB->mvs[k].y = Data->directmvF[k].y = ((TRB * Data->referencemv[k].y) / TRD); pMB->b_mvs[k].y = Data->directmvB[k].y = ((TRB - TRD) * Data->referencemv[k].y) / TRD; if ( (pMB->b_mvs[k].x > Data->max_dx) | (pMB->b_mvs[k].x < Data->min_dx) | (pMB->b_mvs[k].y > Data->max_dy) | (pMB->b_mvs[k].y < Data->min_dy) ) { *best_sad = 256*4096; /* in that case, we won't use direct mode */ pMB->mode = MODE_DIRECT; /* just to make sure it doesn't say "MODE_DIRECT_NONE_MV" */ pMB->b_mvs[0].x = pMB->b_mvs[0].y = 0; return 256*4096; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = pMB->mvs[0]; pMB->b_mvs[1] = pMB->b_mvs[2] = pMB->b_mvs[3] = pMB->b_mvs[0]; Data->directmvF[1] = Data->directmvF[2] = Data->directmvF[3] = Data->directmvF[0]; Data->directmvB[1] = Data->directmvB[2] = Data->directmvB[3] = Data->directmvB[0]; break; } } CheckCandidateDirect(0, 0, Data, 255); /* will also fill iMinSAD[1..4] with 8x8 SADs */ /* initial (fast) skip decision */ if (Data->iMinSAD[1] < (int)Data->iQuant * INITIAL_SKIP_THRESH && Data->iMinSAD[2] < (int)Data->iQuant * INITIAL_SKIP_THRESH && Data->iMinSAD[3] < (int)Data->iQuant * INITIAL_SKIP_THRESH && Data->iMinSAD[4] < (int)Data->iQuant * INITIAL_SKIP_THRESH) { /* possible skip */ SkipDecisionB(pCur, f_Ref, b_Ref, pMB, x, y, Data); if (pMB->mode == MODE_DIRECT_NONE_MV) return *Data->iMinSAD; /* skipped */ } *Data->iMinSAD += Data->lambda16; skip_sad = 4*MAX(MAX(Data->iMinSAD[1],Data->iMinSAD[2]), MAX(Data->iMinSAD[3],Data->iMinSAD[4])); if (Data->chroma) skip_sad += Data->chromaSAD; CheckCandidate = b_mb->mode == MODE_INTER4V ? CheckCandidateDirect : CheckCandidateDirectno4v; if (!(MotionFlags & XVID_ME_SKIP_DELTASEARCH)) { if (MotionFlags & XVID_ME_USESQUARES16) MainSearchPtr = xvid_me_SquareSearch; else if (MotionFlags & XVID_ME_ADVANCEDDIAMOND16) MainSearchPtr = xvid_me_AdvDiamondSearch; else MainSearchPtr = xvid_me_DiamondSearch; MainSearchPtr(0, 0, Data, 255, CheckCandidate); xvid_me_SubpelRefine(Data, CheckCandidate, 0); } *best_sad = *Data->iMinSAD; if (Data->qpel || b_mb->mode == MODE_INTER4V) pMB->mode = MODE_DIRECT; else pMB->mode = MODE_DIRECT_NO4V; /* for faster compensation */ pMB->pmvs[3] = *Data->currentMV; for (k = 0; k < 4; k++) { pMB->mvs[k].x = Data->directmvF[k].x + Data->currentMV->x; pMB->b_mvs[k].x = ( (Data->currentMV->x == 0) ? Data->directmvB[k].x :pMB->mvs[k].x - Data->referencemv[k].x); pMB->mvs[k].y = (Data->directmvF[k].y + Data->currentMV->y); pMB->b_mvs[k].y = ((Data->currentMV->y == 0) ? Data->directmvB[k].y : pMB->mvs[k].y - Data->referencemv[k].y); if (Data->qpel) { pMB->qmvs[k].x = pMB->mvs[k].x; pMB->mvs[k].x /= 2; pMB->b_qmvs[k].x = pMB->b_mvs[k].x; pMB->b_mvs[k].x /= 2; pMB->qmvs[k].y = pMB->mvs[k].y; pMB->mvs[k].y /= 2; pMB->b_qmvs[k].y = pMB->b_mvs[k].y; pMB->b_mvs[k].y /= 2; } if (b_mb->mode != MODE_INTER4V) { pMB->mvs[3] = pMB->mvs[2] = pMB->mvs[1] = pMB->mvs[0]; pMB->b_mvs[3] = pMB->b_mvs[2] = pMB->b_mvs[1] = pMB->b_mvs[0]; pMB->qmvs[3] = pMB->qmvs[2] = pMB->qmvs[1] = pMB->qmvs[0]; pMB->b_qmvs[3] = pMB->b_qmvs[2] = pMB->b_qmvs[1] = pMB->b_qmvs[0]; break; } } return skip_sad; } static void set_range(int * range, SearchData * Data) { Data->min_dx = range[0]; Data->max_dx = range[1]; Data->min_dy = range[2]; Data->max_dy = range[3]; } static void SearchInterpolate(const IMAGE * const f_Ref, const uint8_t * const f_RefH, const uint8_t * const f_RefV, const uint8_t * const f_RefHV, const IMAGE * const b_Ref, const uint8_t * const b_RefH, const uint8_t * const b_RefV, const uint8_t * const b_RefHV, const int x, const int y, const uint32_t fcode, const uint32_t bcode, const uint32_t MotionFlags, const MBParam * const pParam, const VECTOR * const f_predMV, const VECTOR * const b_predMV, MACROBLOCK * const pMB, int32_t * const best_sad, SearchData * const Data) { int i, j; int b_range[4], f_range[4]; int threshA = (MotionFlags & XVID_ME_FAST_MODEINTERPOLATE) ? 250 : 500; int threshB = (MotionFlags & XVID_ME_FAST_MODEINTERPOLATE) ? 150 : 300; Data->qpel_precision = 0; *Data->iMinSAD = 4096*256; Data->iFcode = fcode; Data->bFcode = bcode; i = (x + y * Data->iEdgedWidth) * 16; Data->RefP[0] = f_Ref->y + i; Data->RefP[2] = f_RefH + i; Data->RefP[1] = f_RefV + i; Data->RefP[3] = f_RefHV + i; Data->b_RefP[0] = b_Ref->y + i; Data->b_RefP[2] = b_RefH + i; Data->b_RefP[1] = b_RefV + i; Data->b_RefP[3] = b_RefHV + i; Data->RefP[4] = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->RefP[5] = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefP[4] = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8; Data->b_RefP[5] = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8; Data->chromaX = Data->chromaY = 256*4096; Data->predMV = *f_predMV; Data->bpredMV = *b_predMV; Data->currentMV[0] = Data->currentMV[2]; /* forward search left its vector here */ get_range(f_range, f_range+1, f_range+2, f_range+3, x, y, 4, pParam->width, pParam->height, fcode - Data->qpel, 1, 0); get_range(b_range, b_range+1, b_range+2, b_range+3, x, y, 4, pParam->width, pParam->height, bcode - Data->qpel, 1, 0); if (Data->currentMV[0].x > f_range[1]) Data->currentMV[0].x = f_range[1]; if (Data->currentMV[0].x < f_range[0]) Data->currentMV[0].x = f_range[0]; if (Data->currentMV[0].y > f_range[3]) Data->currentMV[0].y = f_range[3]; if (Data->currentMV[0].y < f_range[2]) Data->currentMV[0].y = f_range[2]; if (Data->currentMV[1].x > b_range[1]) Data->currentMV[1].x = b_range[1]; if (Data->currentMV[1].x < b_range[0]) Data->currentMV[1].x = b_range[0]; if (Data->currentMV[1].y > b_range[3]) Data->currentMV[1].y = b_range[3]; if (Data->currentMV[1].y < b_range[2]) Data->currentMV[1].y = b_range[2]; set_range(f_range, Data); CheckCandidateInt(Data->currentMV[0].x, Data->currentMV[0].y, Data, 1); /* diamond */ do { Data->dir = 0; /* forward MV moves */ i = Data->currentMV[0].x; j = Data->currentMV[0].y; CheckCandidateInt(i + 1, j, Data, 1); CheckCandidateInt(i, j + 1, Data, 1); CheckCandidateInt(i - 1, j, Data, 1); CheckCandidateInt(i, j - 1, Data, 1); /* backward MV moves */ set_range(b_range, Data); i = Data->currentMV[1].x; j = Data->currentMV[1].y; CheckCandidateInt(i + 1, j, Data, 2); CheckCandidateInt(i, j + 1, Data, 2); CheckCandidateInt(i - 1, j, Data, 2); CheckCandidateInt(i, j - 1, Data, 2); set_range(f_range, Data); } while (Data->dir != 0); /* qpel refinement */ if (Data->qpel) { if (*Data->iMinSAD > *best_sad + threshA) return; Data->qpel_precision = 1; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, fcode, 2, 0); Data->currentQMV[0].x = 2 * Data->currentMV[0].x; Data->currentQMV[0].y = 2 * Data->currentMV[0].y; Data->currentQMV[1].x = 2 * Data->currentMV[1].x; Data->currentQMV[1].y = 2 * Data->currentMV[1].y; if (MotionFlags & XVID_ME_QUARTERPELREFINE16) xvid_me_SubpelRefine(Data, CheckCandidateInt, 1); if (*Data->iMinSAD > *best_sad + threshB) return; get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 4, pParam->width, pParam->height, bcode, 2, 0); if (MotionFlags & XVID_ME_QUARTERPELREFINE16) xvid_me_SubpelRefine(Data, CheckCandidateInt, 2); } *Data->iMinSAD += 2 * Data->lambda16; /* two bits are needed to code interpolate mode. */ if (*Data->iMinSAD < *best_sad) { *best_sad = *Data->iMinSAD; pMB->mvs[0] = Data->currentMV[0]; pMB->b_mvs[0] = Data->currentMV[1]; pMB->mode = MODE_INTERPOLATE; if (Data->qpel) { pMB->qmvs[0] = Data->currentQMV[0]; pMB->b_qmvs[0] = Data->currentQMV[1]; pMB->pmvs[1].x = pMB->qmvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->qmvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_qmvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_qmvs[0].y - b_predMV->y; } else { pMB->pmvs[1].x = pMB->mvs[0].x - f_predMV->x; pMB->pmvs[1].y = pMB->mvs[0].y - f_predMV->y; pMB->pmvs[0].x = pMB->b_mvs[0].x - b_predMV->x; pMB->pmvs[0].y = pMB->b_mvs[0].y - b_predMV->y; } } } void MotionEstimationBVOP(MBParam * const pParam, FRAMEINFO * const frame, const int32_t time_bp, const int32_t time_pp, /* forward (past) reference */ const MACROBLOCK * const f_mbs, const IMAGE * const f_ref, const IMAGE * const f_refH, const IMAGE * const f_refV, const IMAGE * const f_refHV, /* backward (future) reference */ const FRAMEINFO * const b_reference, const IMAGE * const b_ref, const IMAGE * const b_refH, const IMAGE * const b_refV, const IMAGE * const b_refHV) { uint32_t i, j; int32_t best_sad; uint32_t skip_sad; const MACROBLOCK * const b_mbs = b_reference->mbs; MACROBLOCK *const pMBs = frame->mbs; VECTOR f_predMV, b_predMV; const int32_t TRB = time_pp - time_bp; const int32_t TRD = time_pp; /* some pre-inintialized data for the rest of the search */ SearchData Data; memset(&Data, 0, sizeof(SearchData)); Data.iEdgedWidth = pParam->edged_width; Data.qpel = pParam->vol_flags & XVID_VOL_QUARTERPEL ? 1 : 0; Data.rounding = 0; Data.chroma = frame->motion_flags & XVID_ME_CHROMA_BVOP; Data.iQuant = frame->quant; Data.RefQ = f_refV->u; /* a good place, also used in MC (for similar purpose) */ /* note: i==horizontal, j==vertical */ for (j = 0; j < pParam->mb_height; j++) { f_predMV = b_predMV = zeroMV; /* prediction is reset at left boundary */ for (i = 0; i < pParam->mb_width; i++) { MACROBLOCK * const pMB = frame->mbs + i + j * pParam->mb_width; const MACROBLOCK * const b_mb = b_mbs + i + j * pParam->mb_width; int interpol_search = 0; int bf_search = 0; int bf_thresh = 0; /* special case, if collocated block is SKIPed in P-VOP: encoding is forward (0,0), cpb=0 without further ado */ if (b_reference->coding_type != S_VOP) if (b_mb->mode == MODE_NOT_CODED) { pMB->mode = MODE_NOT_CODED; pMB->mvs[0] = pMB->b_mvs[0] = zeroMV; pMB->sad16 = 0; continue; } Data.lambda16 = xvid_me_lambda_vec16[b_mb->quant]; Data.Cur = frame->image.y + (j * Data.iEdgedWidth + i) * 16; Data.CurU = frame->image.u + (j * Data.iEdgedWidth/2 + i) * 8; Data.CurV = frame->image.v + (j * Data.iEdgedWidth/2 + i) * 8; /* direct search comes first, because it (1) checks for SKIP-mode and (2) sets very good predictions for forward and backward search */ skip_sad = SearchDirect(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, &frame->image, i, j, frame->motion_flags, TRB, TRD, pParam, pMB, b_mb, &best_sad, &Data); if (pMB->mode == MODE_DIRECT_NONE_MV) { pMB->sad16 = best_sad; continue; } if (frame->motion_flags & XVID_ME_BFRAME_EARLYSTOP) { if(i > 0 && j > 0 && i < pParam->mb_width) { bf_thresh = MIN((&pMBs[(i-1) + j * pParam->mb_width])->sad16, MIN((&pMBs[i + (j-1) * pParam->mb_width])->sad16, (&pMBs[(i+1) + (j-1) * pParam->mb_width])->sad16)); if (((&pMBs[(i-1) + j * pParam->mb_width])->mode != MODE_FORWARD) && ((&pMBs[(i-1) + j * pParam->mb_width])->mode != MODE_BACKWARD) && ((&pMBs[(i-1) + j * pParam->mb_width])->mode != MODE_INTERPOLATE)) bf_search++; if (((&pMBs[i + (j - 1) * pParam->mb_width])->mode != MODE_FORWARD) && ((&pMBs[i + (j - 1) * pParam->mb_width])->mode != MODE_BACKWARD) && ((&pMBs[i + (j - 1) * pParam->mb_width])->mode != MODE_INTERPOLATE)) bf_search++; if (((&pMBs[(i + 1) + (j - 1) * pParam->mb_width])->mode != MODE_FORWARD) && ((&pMBs[(i + 1) + (j - 1) * pParam->mb_width])->mode != MODE_BACKWARD) && ((&pMBs[(i + 1) + (j - 1) * pParam->mb_width])->mode != MODE_INTERPOLATE)) bf_search++; } if ((best_sad < bf_thresh) && (bf_search == 3)) continue; } /* forward search */ SearchBF(f_ref, f_refH->y, f_refV->y, f_refHV->y, i, j, frame->motion_flags, frame->fcode, pParam, pMB, &f_predMV, &best_sad, MODE_FORWARD, &Data); /* backward search */ SearchBF(b_ref, b_refH->y, b_refV->y, b_refHV->y, i, j, frame->motion_flags, frame->bcode, pParam, pMB, &b_predMV, &best_sad, MODE_BACKWARD, &Data); /* interpolate search comes last, because it uses data from forward and backward as prediction */ if (frame->motion_flags & XVID_ME_FAST_MODEINTERPOLATE) { if(i > 0 && j > 0 && i < pParam->mb_width) { if ((&pMBs[(i-1) + j * pParam->mb_width])->mode == MODE_INTERPOLATE) interpol_search++; if ((&pMBs[i + (j - 1) * pParam->mb_width])->mode == MODE_INTERPOLATE) interpol_search++; if ((&pMBs[(i + 1) + (j - 1) * pParam->mb_width])->mode == MODE_INTERPOLATE) interpol_search++; } else interpol_search = 1; interpol_search |= !(best_sad < 3 * Data.iQuant * MAX_SAD00_FOR_SKIP * (Data.chroma ? 3:2)); } else interpol_search = 1; if (interpol_search) { SearchInterpolate(f_ref, f_refH->y, f_refV->y, f_refHV->y, b_ref, b_refH->y, b_refV->y, b_refHV->y, i, j, frame->fcode, frame->bcode, frame->motion_flags, pParam, &f_predMV, &b_predMV, pMB, &best_sad, &Data); } /* final skip decision */ if ( (skip_sad < Data.iQuant * MAX_SAD00_FOR_SKIP ) && ((100*best_sad)/(skip_sad+1) > FINAL_SKIP_THRESH) ) SkipDecisionB(&frame->image, f_ref, b_ref, pMB, i, j, &Data); switch (pMB->mode) { case MODE_FORWARD: f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0]; pMB->sad16 = best_sad; break; case MODE_BACKWARD: b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0]; pMB->sad16 = best_sad; break; case MODE_INTERPOLATE: f_predMV = Data.qpel ? pMB->qmvs[0] : pMB->mvs[0]; b_predMV = Data.qpel ? pMB->b_qmvs[0] : pMB->b_mvs[0]; pMB->sad16 = best_sad; break; default: pMB->sad16 = best_sad; break; } } } }