--- gmc.c 2003/06/28 15:54:10 1.1 +++ gmc.c 2003/07/13 09:58:35 1.1.2.2 @@ -0,0 +1,464 @@ +/************************************************************************** + * + * XVID MPEG-4 VIDEO CODEC + * GMC interpolation module + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + *************************************************************************/ + +#include "../portab.h" +#include "../global.h" +#include "../encoder.h" +#include "gmc.h" + +#include + +/* These are mainly the new GMC routines by -Skal- (C) 2003 */ + +////////////////////////////////////////////////////////// +// Pts = 2 or 3 + +// Warning! *src is the global frame pointer (that is: adress +// of pixel 0,0), not the macroblock one. +// Conversely, *dst is the macroblock top-left adress. + + +void Predict_16x16_C(const NEW_GMC_DATA * const This, + uint8_t *dst, const uint8_t *src, + int dststride, int srcstride, int x, int y, int rounding) +{ + const int W = This->sW; + const int H = This->sH; + const int rho = 3 - This->accuracy; + const int Rounder = ( (1<<7) - (rounding<<(2*rho)) ) << 16; + + const int dUx = This->dU[0]; + const int dVx = This->dV[0]; + const int dUy = This->dU[1]; + const int dVy = This->dV[1]; + + int Uo = This->Uo + 16*(dUy*y + dUx*x); + int Vo = This->Vo + 16*(dVy*y + dVx*x); + + int i, j; + + dst += 16; + for (j=16; j>0; --j) + { + int U = Uo, V = Vo; + Uo += dUy; Vo += dVy; + for (i=-16; i<0; ++i) + { + unsigned int f0, f1, ri, rj; + int Offset; + + int u = ( U >> 16 ) << rho; + int v = ( V >> 16 ) << rho; + U += dUx; V += dVx; + + ri = 16; + if ((uint32_t)u<=(uint32_t)W) { ri = MTab[u&15]; Offset = u>>4; } + else if (u>W) Offset = W>>4; + else Offset = -1; + + rj = 16; + if ((uint32_t)v<=(uint32_t)H) { rj = MTab[v&15]; Offset += (v>>4)*srcstride; } + else if (v>H) Offset += (H>>4)*srcstride; + else Offset -= srcstride; + + f0 = src[ Offset +0 ]; + f0 |= src[ Offset +1 ] << 16; + f1 = src[ Offset+srcstride +0 ]; + f1 |= src[ Offset+srcstride +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + Rounder ) >> 24; + + dst[i] = (uint8_t)f0; + } + dst += dststride; + } +} + + +void Predict_8x8_C(const NEW_GMC_DATA * const This, + uint8_t *uDst, const uint8_t *uSrc, + uint8_t *vDst, const uint8_t *vSrc, + int dststride, int srcstride, int x, int y, int rounding) +{ + const int W = This->sW >> 1; + const int H = This->sH >> 1; + const int rho = 3-This->accuracy; + const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16; + + const int32_t dUx = This->dU[0]; + const int32_t dVx = This->dV[0]; + const int32_t dUy = This->dU[1]; + const int32_t dVy = This->dV[1]; + + int32_t Uo = This->Uco + 8*(dUy*y + dUx*x); + int32_t Vo = This->Vco + 8*(dVy*y + dVx*x); + + int i, j; + + uDst += 8; + vDst += 8; + for (j=8; j>0; --j) + { + int32_t U = Uo, V = Vo; + Uo += dUy; Vo += dVy; + + for (i=-8; i<0; ++i) + { + int Offset; + uint32_t f0, f1, ri, rj; + int32_t u, v; + + u = ( U >> 16 ) << rho; + v = ( V >> 16 ) << rho; + U += dUx; V += dVx; + + if ((uint32_t)u<=(uint32_t)W) { + ri = MTab[u&15]; + Offset = u>>4; + } + else { + ri = 16; + if (u>W) Offset = W>>4; + else Offset = -1; + } + if ((uint32_t)v<=(uint32_t)H) { + rj = MTab[v&15]; + Offset += (v>>4)*srcstride; + } + else { + rj = 16; + if (v>H) Offset += (H>>4)*srcstride; + else Offset -= srcstride; + } + + f0 = uSrc[ Offset +0 ]; + f0 |= uSrc[ Offset +1 ] << 16; + f1 = uSrc[ Offset+srcstride +0 ]; + f1 |= uSrc[ Offset+srcstride +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + Rounder ) >> 24; + + uDst[i] = (uint8_t)f0; + + f0 = vSrc[ Offset +0 ]; + f0 |= vSrc[ Offset +1 ] << 16; + f1 = vSrc[ Offset+srcstride +0 ]; + f1 |= vSrc[ Offset+srcstride +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + Rounder ) >> 24; + + vDst[i] = (uint8_t)f0; + } + uDst += dststride; + vDst += dststride; + } +} + + +void get_average_mv_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv, + int x, int y, int qpel) +{ + int i, j; + int vx = 0, vy = 0; + int32_t uo = Dsp->Uo + 16*(Dsp->dU[1]*y + Dsp->dU[0]*x); + int32_t vo = Dsp->Vo + 16*(Dsp->dV[1]*y + Dsp->dV[0]*x); + for (j=16; j>0; --j) + { + int32_t U, V; + U = uo; uo += Dsp->dU[1]; + V = vo; vo += Dsp->dV[1]; + for (i=16; i>0; --i) + { + int32_t u,v; + u = U >> 16; U += Dsp->dU[0]; vx += u; + v = V >> 16; V += Dsp->dV[0]; vy += v; + } + } + vx -= (256*x+120) << (5+Dsp->accuracy); // 120 = 15*16/2 + vy -= (256*y+120) << (5+Dsp->accuracy); + + mv->x = RSHIFT( vx, 8+Dsp->accuracy - qpel ); + mv->y = RSHIFT( vy, 8+Dsp->accuracy - qpel ); +} + +////////////////////////////////////////////////////////// +// simplified version for 1 warp point + + +void Predict_1pt_16x16_C(const NEW_GMC_DATA * const This, + uint8_t *Dst, const uint8_t *Src, + int dststride, int srcstride, int x, int y, int rounding) +{ + const int W = This->sW; + const int H = This->sH; + const int rho = 3-This->accuracy; + const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16; + + + int32_t uo = This->Uo + (x<<8); // ((16*x)<<4) + int32_t vo = This->Vo + (y<<8); + const uint32_t ri = MTab[uo & 15]; + const uint32_t rj = MTab[vo & 15]; + int i, j; + + int32_t Offset; + if ((uint32_t)vo<=(uint32_t)H) Offset = (vo>>4)*srcstride; + else if (vo>H) Offset = ( H>>4)*srcstride; + else Offset =-16*srcstride; + if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4); + else if (uo>W) Offset += ( W>>4); + else Offset -= 16; + + Dst += 16; + + for(j=16; j>0; --j, Offset+=srcstride-16) + { + for(i=-16; i<0; ++i, ++Offset) + { + uint32_t f0, f1; + f0 = Src[ Offset +0 ]; + f0 |= Src[ Offset +1 ] << 16; + f1 = Src[ Offset+srcstride +0 ]; + f1 |= Src[ Offset+srcstride +1 ] << 16; + f0 = (ri*f0)>>16; + f1 = (ri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rj*f0 + Rounder ) >> 24; + Dst[i] = (uint8_t)f0; + } + Dst += dststride; + } +} + + +void Predict_1pt_8x8_C(const NEW_GMC_DATA * const This, + uint8_t *uDst, const uint8_t *uSrc, + uint8_t *vDst, const uint8_t *vSrc, + int dststride, int srcstride, int x, int y, int rounding) +{ + const int W = This->sW >> 1; + const int H = This->sH >> 1; + const int rho = 3-This->accuracy; + const int32_t Rounder = ( 128 - (rounding<<(2*rho)) ) << 16; + + int32_t uo = This->Uco + (x<<7); + int32_t vo = This->Vco + (y<<7); + const uint32_t rri = MTab[uo & 15]; + const uint32_t rrj = MTab[vo & 15]; + int i, j; + + int32_t Offset; + if ((uint32_t)vo<=(uint32_t)H) Offset = (vo>>4)*srcstride; + else if (vo>H) Offset = ( H>>4)*srcstride; + else Offset =-8*srcstride; + if ((uint32_t)uo<=(uint32_t)W) Offset += (uo>>4); + else if (uo>W) Offset += (W>>4); + else Offset -= 8; + + uDst += 8; + vDst += 8; + for(j=8; j>0; --j, Offset+=srcstride-8) + { + for(i=-8; i<0; ++i, Offset++) + { + uint32_t f0, f1; + f0 = uSrc[ Offset + 0 ]; + f0 |= uSrc[ Offset + 1 ] << 16; + f1 = uSrc[ Offset + srcstride + 0 ]; + f1 |= uSrc[ Offset + srcstride + 1 ] << 16; + f0 = (rri*f0)>>16; + f1 = (rri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rrj*f0 + Rounder ) >> 24; + uDst[i] = (uint8_t)f0; + + f0 = vSrc[ Offset + 0 ]; + f0 |= vSrc[ Offset + 1 ] << 16; + f1 = vSrc[ Offset + srcstride + 0 ]; + f1 |= vSrc[ Offset + srcstride + 1 ] << 16; + f0 = (rri*f0)>>16; + f1 = (rri*f1) & 0x0fff0000; + f0 |= f1; + f0 = ( rrj*f0 + Rounder ) >> 24; + vDst[i] = (uint8_t)f0; + } + uDst += dststride; + vDst += dststride; + } +} + + +void get_average_mv_1pt_C(const NEW_GMC_DATA * const Dsp, VECTOR * const mv, + int x, int y, int qpel) +{ + mv->x = RSHIFT(Dsp->Uo<y = RSHIFT(Dsp->Vo<sW = width << 4; + gmc->sH = height << 4; + gmc->accuracy = accuracy; + gmc->num_wp = nb_pts; + + // reduce the number of points, if possible + if (nb_pts<3 || (pts->duv[2].x==-pts->duv[1].y && pts->duv[2].y==pts->duv[1].x)) { + if (nb_pts<2 || (pts->duv[1].x==0 && pts->duv[1].y==0)) { + if (nb_pts<1 || (pts->duv[0].x==0 && pts->duv[0].y==0)) { + nb_pts = 0; + } + else nb_pts = 1; + } + else nb_pts = 2; + } + else nb_pts = 3; + + // now, nb_pts stores the actual number of points required for interpolation + + if (nb_pts<=1) + { + if (nb_pts==1) { + // store as 4b fixed point + gmc->Uo = pts->duv[0].x << accuracy; + gmc->Vo = pts->duv[0].y << accuracy; + gmc->Uco = ((pts->duv[0].x>>1) | (pts->duv[0].x&1)) << accuracy; // DIV2RND() + gmc->Vco = ((pts->duv[0].y>>1) | (pts->duv[0].y&1)) << accuracy; // DIV2RND() + } + else { // zero points?! + gmc->Uo = gmc->Vo = 0; + gmc->Uco = gmc->Vco = 0; + } + + gmc->predict_16x16 = Predict_1pt_16x16_C; + gmc->predict_8x8 = Predict_1pt_8x8_C; + gmc->get_average_mv = get_average_mv_1pt_C; + } + else { // 2 or 3 points + const int rho = 3 - accuracy; // = {3,2,1,0} for Acc={0,1,2,3} + int Alpha = log2bin(width-1); + int Ws = 1 << Alpha; + + gmc->dU[0] = 16*Ws + RDIV( 8*Ws*pts->duv[1].x, width ); // dU/dx + gmc->dV[0] = RDIV( 8*Ws*pts->duv[1].y, width ); // dV/dx + +/* disabled, because possibly buggy? */ + +/* if (nb_pts==2) { + gmc->dU[1] = -gmc->dV[0]; // -Sin + gmc->dV[1] = gmc->dU[0] ; // Cos + } + else */ + { + const int Beta = log2bin(height-1); + const int Hs = 1<dU[1] = RDIV( 8*Hs*pts->duv[2].x, height ); // dU/dy + gmc->dV[1] = 16*Hs + RDIV( 8*Hs*pts->duv[2].y, height ); // dV/dy + if (Beta>Alpha) { + gmc->dU[0] <<= (Beta-Alpha); + gmc->dV[0] <<= (Beta-Alpha); + Alpha = Beta; + Ws = Hs; + } + else { + gmc->dU[1] <<= Alpha - Beta; + gmc->dV[1] <<= Alpha - Beta; + } + } + // upscale to 16b fixed-point + gmc->dU[0] <<= (16-Alpha - rho); + gmc->dU[1] <<= (16-Alpha - rho); + gmc->dV[0] <<= (16-Alpha - rho); + gmc->dV[1] <<= (16-Alpha - rho); + + gmc->Uo = ( pts->duv[0].x <<(16+ accuracy)) + (1<<15); + gmc->Vo = ( pts->duv[0].y <<(16+ accuracy)) + (1<<15); + gmc->Uco = ((pts->duv[0].x-1)<<(17+ accuracy)) + (1<<17); + gmc->Vco = ((pts->duv[0].y-1)<<(17+ accuracy)) + (1<<17); + gmc->Uco = (gmc->Uco + gmc->dU[0] + gmc->dU[1])>>2; + gmc->Vco = (gmc->Vco + gmc->dV[0] + gmc->dV[1])>>2; + + gmc->predict_16x16 = Predict_16x16_C; + gmc->predict_8x8 = Predict_8x8_C; + gmc->get_average_mv = get_average_mv_C; + } +} + +////////////////////////////////////////////////////////// + + +/* quick and dirty routine to generate the full warped image (pGMC != NULL) + or just all average Motion Vectors (pGMC == NULL) */ + +void +generate_GMCimage( const NEW_GMC_DATA *const gmc_data, // [input] precalculated data + const IMAGE *const pRef, // [input] + const int mb_width, + const int mb_height, + const int stride, + const int stride2, + const int fcode, // [input] some parameters... + const int32_t quarterpel, // [input] for rounding avgMV + const int reduced_resolution, // [input] ignored + const int32_t rounding, // [input] for rounding image data + MACROBLOCK *const pMBs, // [output] average motion vectors + IMAGE *const pGMC) // [output] full warped image +{ + + unsigned int mj,mi; + VECTOR avgMV; + + for (mj = 0; mj < (unsigned int)mb_height; mj++) + for (mi = 0; mi < (unsigned int)mb_width; mi++) { + const int mbnum = mj*mb_width+mi; + if (pGMC) + { + gmc_data->predict_16x16(gmc_data, + pGMC->y + mj*16*stride + mi*16, pRef->y, + stride, stride, mi, mj, rounding); + + gmc_data->predict_8x8(gmc_data, + pGMC->u + mj*8*stride2 + mi*8, pRef->u, + pGMC->v + mj*8*stride2 + mi*8, pRef->v, + stride2, stride2, mi, mj, rounding); + } + gmc_data->get_average_mv(gmc_data, &avgMV, mi, mj, quarterpel); + + pMBs[mbnum].amv.x = gmc_sanitize(avgMV.x, quarterpel, fcode); + pMBs[mbnum].amv.y = gmc_sanitize(avgMV.y, quarterpel, fcode); + + pMBs[mbnum].mcsel = 0; /* until mode decision */ + } +}