[cvs] / xvidcore / src / motion / motion_est.c Repository:
ViewVC logotype

Diff of /xvidcore/src/motion/motion_est.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.44.2.53, Wed Feb 12 12:57:27 2003 UTC revision 1.73, Mon Mar 22 22:36:24 2004 UTC
# Line 46  Line 46 
46  #include "../utils/emms.h"  #include "../utils/emms.h"
47  #include "../dct/fdct.h"  #include "../dct/fdct.h"
48    
49    /*****************************************************************************
50     * Modified rounding tables -- declared in motion.h
51     * Original tables see ISO spec tables 7-6 -> 7-9
52     ****************************************************************************/
53    
54    const uint32_t roundtab[16] =
55    {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 };
56    
57    /* K = 4 */
58    const uint32_t roundtab_76[16] =
59    { 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 };
60    
61    /* K = 2 */
62    const uint32_t roundtab_78[8] =
63    { 0, 0, 1, 1, 0, 0, 0, 1  };
64    
65    /* K = 1 */
66    const uint32_t roundtab_79[4] =
67    { 0, 1, 0, 0 };
68    
69  #define INITIAL_SKIP_THRESH     (10)  #define INITIAL_SKIP_THRESH     (10)
70  #define FINAL_SKIP_THRESH       (50)  #define FINAL_SKIP_THRESH       (50)
71  #define MAX_SAD00_FOR_SKIP      (20)  #define MAX_SAD00_FOR_SKIP      (20)
# Line 54  Line 74 
74  #define CHECK_CANDIDATE(X,Y,D) { \  #define CHECK_CANDIDATE(X,Y,D) { \
75  CheckCandidate((X),(Y), (D), &iDirection, data ); }  CheckCandidate((X),(Y), (D), &iDirection, data ); }
76    
77    /*****************************************************************************
78     * Code
79     ****************************************************************************/
80    
81  static __inline uint32_t  static __inline uint32_t
82  d_mv_bits(int x, int y, const VECTOR pred, const uint32_t iFcode, const int qpel, const int rrv)  d_mv_bits(int x, int y, const VECTOR pred, const uint32_t iFcode, const int qpel, const int rrv)
83  {  {
84          int xb, yb;          int bits;
85          x = qpel ? x<<1 : x;          const int q = (1 << (iFcode - 1)) - 1;
86          y = qpel ? y<<1 : y;  
87            x <<= qpel;
88            y <<= qpel;
89          if (rrv) { x = RRV_MV_SCALEDOWN(x); y = RRV_MV_SCALEDOWN(y); }          if (rrv) { x = RRV_MV_SCALEDOWN(x); y = RRV_MV_SCALEDOWN(y); }
90    
91          x -= pred.x;          x -= pred.x;
92          y -= pred.y;          bits = (x != 0 ? iFcode:0);
93            x = abs(x);
94          if (x) {          x += q;
                 x = ABS(x);  
                 x += (1 << (iFcode - 1)) - 1;  
95                  x >>= (iFcode - 1);                  x >>= (iFcode - 1);
96                  if (x > 32) x = 32;          bits += mvtab[x];
97                  xb = mvtab[x] + iFcode;  
98          } else xb = 1;          y -= pred.y;
99            bits += (y != 0 ? iFcode:0);
100          if (y) {          y = abs(y);
101                  y = ABS(y);          y += q;
                 y += (1 << (iFcode - 1)) - 1;  
102                  y >>= (iFcode - 1);                  y >>= (iFcode - 1);
103                  if (y > 32) y = 32;          bits += mvtab[y];
104                  yb = mvtab[y] + iFcode;  
105          } else yb = 1;          return bits;
         return xb + yb;  
106  }  }
107    
108  static int32_t ChromaSAD2(int fx, int fy, int bx, int by, const SearchData * const data)  static int32_t ChromaSAD2(const int fx, const int fy, const int bx, const int by,
109                                                            const SearchData * const data)
110  {  {
111          int sad;          int sad;
112          const uint32_t stride = data->iEdgedWidth/2;          const uint32_t stride = data->iEdgedWidth/2;
# Line 91  Line 114 
114                  * f_refv = data->RefQ + 8,                  * f_refv = data->RefQ + 8,
115                  * b_refu = data->RefQ + 16,                  * b_refu = data->RefQ + 16,
116                  * b_refv = data->RefQ + 24;                  * b_refv = data->RefQ + 24;
117            int offset = (fx>>1) + (fy>>1)*stride;
118    
119          switch (((fx & 1) << 1) | (fy & 1))     {          switch (((fx & 1) << 1) | (fy & 1))     {
120                  case 0:                  case 0:
121                          fx = fx / 2; fy = fy / 2;                          f_refu = (uint8_t*)data->RefP[4] + offset;
122                          f_refu = (uint8_t*)data->RefCU + fy * stride + fx, stride;                          f_refv = (uint8_t*)data->RefP[5] + offset;
                         f_refv = (uint8_t*)data->RefCV + fy * stride + fx, stride;  
123                          break;                          break;
124                  case 1:                  case 1:
125                          fx = fx / 2; fy = (fy - 1) / 2;                          interpolate8x8_halfpel_v(f_refu, data->RefP[4] + offset, stride, data->rounding);
126                          interpolate8x8_halfpel_v(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding);                          interpolate8x8_halfpel_v(f_refv, data->RefP[5] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_v(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding);  
127                          break;                          break;
128                  case 2:                  case 2:
129                          fx = (fx - 1) / 2; fy = fy / 2;                          interpolate8x8_halfpel_h(f_refu, data->RefP[4] + offset, stride, data->rounding);
130                          interpolate8x8_halfpel_h(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding);                          interpolate8x8_halfpel_h(f_refv, data->RefP[5] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_h(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding);  
131                          break;                          break;
132                  default:                  default:
133                          fx = (fx - 1) / 2; fy = (fy - 1) / 2;                          interpolate8x8_halfpel_hv(f_refu, data->RefP[4] + offset, stride, data->rounding);
134                          interpolate8x8_halfpel_hv(f_refu, data->RefCU + fy * stride + fx, stride, data->rounding);                          interpolate8x8_halfpel_hv(f_refv, data->RefP[5] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_hv(f_refv, data->RefCV + fy * stride + fx, stride, data->rounding);  
135                          break;                          break;
136          }          }
137    
138            offset = (bx>>1) + (by>>1)*stride;
139          switch (((bx & 1) << 1) | (by & 1))     {          switch (((bx & 1) << 1) | (by & 1))     {
140                  case 0:                  case 0:
141                          bx = bx / 2; by = by / 2;                          b_refu = (uint8_t*)data->b_RefP[4] + offset;
142                          b_refu = (uint8_t*)data->b_RefCU + by * stride + bx, stride;                          b_refv = (uint8_t*)data->b_RefP[5] + offset;
                         b_refv = (uint8_t*)data->b_RefCV + by * stride + bx, stride;  
143                          break;                          break;
144                  case 1:                  case 1:
145                          bx = bx / 2; by = (by - 1) / 2;                          interpolate8x8_halfpel_v(b_refu, data->b_RefP[4] + offset, stride, data->rounding);
146                          interpolate8x8_halfpel_v(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding);                          interpolate8x8_halfpel_v(b_refv, data->b_RefP[5] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_v(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding);  
147                          break;                          break;
148                  case 2:                  case 2:
149                          bx = (bx - 1) / 2; by = by / 2;                          interpolate8x8_halfpel_h(b_refu, data->b_RefP[4] + offset, stride, data->rounding);
150                          interpolate8x8_halfpel_h(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding);                          interpolate8x8_halfpel_h(b_refv, data->b_RefP[5] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_h(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding);  
151                          break;                          break;
152                  default:                  default:
153                          bx = (bx - 1) / 2; by = (by - 1) / 2;                          interpolate8x8_halfpel_hv(b_refu, data->b_RefP[4] + offset, stride, data->rounding);
154                          interpolate8x8_halfpel_hv(b_refu, data->b_RefCU + by * stride + bx, stride, data->rounding);                          interpolate8x8_halfpel_hv(b_refv, data->b_RefP[5] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_hv(b_refv, data->b_RefCV + by * stride + bx, stride, data->rounding);  
155                          break;                          break;
156          }          }
157    
# Line 144  Line 161 
161          return sad;          return sad;
162  }  }
163    
   
164  static int32_t  static int32_t
165  ChromaSAD(int dx, int dy, const SearchData * const data)  ChromaSAD(const int dx, const int dy, const SearchData * const data)
166  {  {
167          int sad;          int sad;
168          const uint32_t stride = data->iEdgedWidth/2;          const uint32_t stride = data->iEdgedWidth/2;
169            int offset = (dx>>1) + (dy>>1)*stride;
170    
171          if (dx == data->temp[5] && dy == data->temp[6]) return data->temp[7]; //it has been checked recently          if (dx == data->temp[5] && dy == data->temp[6]) return data->temp[7]; //it has been checked recently
172          data->temp[5] = dx; data->temp[6] = dy; // backup          data->temp[5] = dx; data->temp[6] = dy; // backup
173    
174          switch (((dx & 1) << 1) | (dy & 1))     {          switch (((dx & 1) << 1) | (dy & 1))     {
175                  case 0:                  case 0:
176                          dx = dx / 2; dy = dy / 2;                          sad = sad8(data->CurU, data->RefP[4] + offset, stride);
177                          sad = sad8(data->CurU, data->RefCU + dy * stride + dx, stride);                          sad += sad8(data->CurV, data->RefP[5] + offset, stride);
                         sad += sad8(data->CurV, data->RefCV + dy * stride + dx, stride);  
178                          break;                          break;
179                  case 1:                  case 1:
180                          dx = dx / 2; dy = (dy - 1) / 2;                          sad = sad8bi(data->CurU, data->RefP[4] + offset, data->RefP[4] + offset + stride, stride);
181                          sad = sad8bi(data->CurU, data->RefCU + dy * stride + dx, data->RefCU + (dy+1) * stride + dx, stride);                          sad += sad8bi(data->CurV, data->RefP[5] + offset, data->RefP[5] + offset + stride, stride);
                         sad += sad8bi(data->CurV, data->RefCV + dy * stride + dx, data->RefCV + (dy+1) * stride + dx, stride);  
182                          break;                          break;
183                  case 2:                  case 2:
184                          dx = (dx - 1) / 2; dy = dy / 2;                          sad = sad8bi(data->CurU, data->RefP[4] + offset, data->RefP[4] + offset + 1, stride);
185                          sad = sad8bi(data->CurU, data->RefCU + dy * stride + dx, data->RefCU + dy * stride + dx+1, stride);                          sad += sad8bi(data->CurV, data->RefP[5] + offset, data->RefP[5] + offset + 1, stride);
                         sad += sad8bi(data->CurV, data->RefCV + dy * stride + dx, data->RefCV + dy * stride + dx+1, stride);  
186                          break;                          break;
187                  default:                  default:
188                          dx = (dx - 1) / 2; dy = (dy - 1) / 2;                          interpolate8x8_halfpel_hv(data->RefQ, data->RefP[4] + offset, stride, data->rounding);
                         interpolate8x8_halfpel_hv(data->RefQ, data->RefCU + dy * stride + dx, stride, data->rounding);  
189                          sad = sad8(data->CurU, data->RefQ, stride);                          sad = sad8(data->CurU, data->RefQ, stride);
190    
191                          interpolate8x8_halfpel_hv(data->RefQ, data->RefCV + dy * stride + dx, stride, data->rounding);                          interpolate8x8_halfpel_hv(data->RefQ, data->RefP[5] + offset, stride, data->rounding);
192                          sad += sad8(data->CurV, data->RefQ, stride);                          sad += sad8(data->CurV, data->RefQ, stride);
193                          break;                          break;
194          }          }
# Line 187  Line 200 
200  GetReferenceB(const int x, const int y, const uint32_t dir, const SearchData * const data)  GetReferenceB(const int x, const int y, const uint32_t dir, const SearchData * const data)
201  {  {
202  //      dir : 0 = forward, 1 = backward  //      dir : 0 = forward, 1 = backward
203          switch ( (dir << 2) | ((x&1)<<1) | (y&1) ) {          const uint8_t *const *const direction = ( dir == 0 ? data->RefP : data->b_RefP );
204                  case 0 : return data->Ref + x/2 + (y/2)*(data->iEdgedWidth);          const int picture = ((x&1)<<1) | (y&1);
205                  case 1 : return data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth);          const int offset = (x>>1) + (y>>1)*data->iEdgedWidth;
206                  case 2 : return data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth);          return direction[picture] + offset;
                 case 3 : return data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth);  
                 case 4 : return data->bRef + x/2 + (y/2)*(data->iEdgedWidth);  
                 case 5 : return data->bRefV + x/2 + ((y-1)/2)*(data->iEdgedWidth);  
                 case 6 : return data->bRefH + (x-1)/2 + (y/2)*(data->iEdgedWidth);  
                 default : return data->bRefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth);  
         }  
207  }  }
208    
209  // this is a simpler copy of GetReferenceB, but as it's __inline anyway, we can keep the two separate  // this is a simpler copy of GetReferenceB, but as it's __inline anyway, we can keep the two separate
210  static __inline const uint8_t *  static __inline const uint8_t *
211  GetReference(const int x, const int y, const SearchData * const data)  GetReference(const int x, const int y, const SearchData * const data)
212  {  {
213          switch ( ((x&1)<<1) | (y&1) ) {          const int picture = ((x&1)<<1) | (y&1);
214                  case 0 : return data->Ref + x/2 + (y/2)*(data->iEdgedWidth);          const int offset = (x>>1) + (y>>1)*data->iEdgedWidth;
215                  case 3 : return data->RefHV + (x-1)/2 + ((y-1)/2)*(data->iEdgedWidth);          return data->RefP[picture] + offset;
                 case 1 : return data->RefV + x/2 + ((y-1)/2)*(data->iEdgedWidth);  
                 default : return data->RefH + (x-1)/2 + (y/2)*(data->iEdgedWidth);      //case 2  
         }  
216  }  }
217    
218  static uint8_t *  static uint8_t *
# Line 225  Line 229 
229          ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data);          ref1 = GetReferenceB(halfpel_x, halfpel_y, dir, data);
230          ref1 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;          ref1 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
231          switch( ((x&1)<<1) + (y&1) ) {          switch( ((x&1)<<1) + (y&1) ) {
232          case 0: // pure halfpel position          case 3: // x and y in qpel resolution - the "corners" (top left/right and
233                  return (uint8_t *) ref1;                          // bottom left/right) during qpel refinement
234                    ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);
235                    ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);
236                    ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data);
237                    ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
238                    ref3 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
239                    ref4 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;
240                    interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding);
241                  break;                  break;
242    
243          case 1: // x halfpel, y qpel - top or bottom during qpel refinement          case 1: // x halfpel, y qpel - top or bottom during qpel refinement
# Line 241  Line 252 
252                  interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);                  interpolate8x8_avg2(Reference, ref1, ref2, iEdgedWidth, rounding, 8);
253                  break;                  break;
254    
255          default: // x and y in qpel resolution - the "corners" (top left/right and          default: // pure halfpel position
256                           // bottom left/right) during qpel refinement                  return (uint8_t *) ref1;
257                  ref2 = GetReferenceB(halfpel_x, y - halfpel_y, dir, data);  
                 ref3 = GetReferenceB(x - halfpel_x, halfpel_y, dir, data);  
                 ref4 = GetReferenceB(x - halfpel_x, y - halfpel_y, dir, data);  
                 ref2 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;  
                 ref3 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;  
                 ref4 += 8 * (block&1) + 8 * (block>>1) * iEdgedWidth;  
                 interpolate8x8_avg4(Reference, ref1, ref2, ref3, ref4, iEdgedWidth, rounding);  
                 break;  
258          }          }
259          return Reference;          return Reference;
260  }  }
# Line 295  Line 299 
299                  interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8);                  interpolate8x8_avg2(Reference+8*iEdgedWidth+8, ref1+8*iEdgedWidth+8, ref2+8*iEdgedWidth+8, iEdgedWidth, rounding, 8);
300                  break;                  break;
301    
302          case 0: // pure halfpel position          default: // pure halfpel position
303                  return (uint8_t *) ref1;                  return (uint8_t *) ref1;
304          }          }
305          return Reference;          return Reference;
# Line 347  Line 351 
351                  data->iMinSAD[3] = data->temp[3]; current[3].x = x; current[3].y = y; }                  data->iMinSAD[3] = data->temp[3]; current[3].x = x; current[3].y = y; }
352          if (data->temp[4] < data->iMinSAD[4]) {          if (data->temp[4] < data->iMinSAD[4]) {
353                  data->iMinSAD[4] = data->temp[4]; current[4].x = x; current[4].y = y; }                  data->iMinSAD[4] = data->temp[4]; current[4].x = x; current[4].y = y; }
   
354  }  }
355    
356  static void  static void
# Line 355  Line 358 
358  {  {
359          int32_t sad; uint32_t t;          int32_t sad; uint32_t t;
360          const uint8_t * Reference;          const uint8_t * Reference;
361            VECTOR * current;
362    
363          if ( (x > data->max_dx) || (x < data->min_dx)          if ( (x > data->max_dx) || (x < data->min_dx)
364                  || (y > data->max_dy) || (y < data->min_dy) ) return;                  || (y > data->max_dy) || (y < data->min_dy) ) return;
365    
366          if (!data->qpel_precision) Reference = GetReference(x, y, data);          if (!data->qpel_precision) {
367          else Reference = Interpolate8x8qpel(x, y, 0, 0, data);                  Reference = GetReference(x, y, data);
368                    current = data->currentMV;
369            } else { // x and y are in 1/4 precision
370                    Reference = Interpolate8x8qpel(x, y, 0, 0, data);
371                    current = data->currentQMV;
372            }
373    
374          sad = sad8(data->Cur, Reference, data->iEdgedWidth);          sad = sad8(data->Cur, Reference, data->iEdgedWidth);
375          t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);          t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
# Line 369  Line 378 
378    
379          if (sad < *(data->iMinSAD)) {          if (sad < *(data->iMinSAD)) {
380                  *(data->iMinSAD) = sad;                  *(data->iMinSAD) = sad;
381                  data->currentMV->x = x; data->currentMV->y = y;                  current->x = x; current->y = y;
382                  *dir = Direction;                  *dir = Direction;
383          }          }
384  }  }
385    
   
386  static void  static void
387  CheckCandidate32(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)  CheckCandidate32(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
388  {  {
389          uint32_t t;          uint32_t t;
390          const uint8_t * Reference;          const uint8_t * Reference;
391    
392          if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || //non-zero integer value          if ( (!(x&1) && x !=0) || (!(y&1) && y !=0) || //non-zero even value
393                  (x > data->max_dx) || (x < data->min_dx)                  (x > data->max_dx) || (x < data->min_dx)
394                  || (y > data->max_dy) || (y < data->min_dy) ) return;                  || (y > data->max_dy) || (y < data->min_dy) ) return;
395    
# Line 416  Line 424 
424          uint32_t t;          uint32_t t;
425          VECTOR * current;          VECTOR * current;
426    
427          if ( (x > data->max_dx) | ( x < data->min_dx)          if ( (x > data->max_dx) || ( x < data->min_dx)
428                  | (y > data->max_dy) | (y < data->min_dy) ) return;                  || (y > data->max_dy) || (y < data->min_dy) ) return;
429    
430          if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; //non-zero even value          if (data->rrv && (!(x&1) && x !=0) | (!(y&1) && y !=0) ) return; //non-zero even value
431    
# Line 455  Line 463 
463          if ( (x > data->max_dx) || (x < data->min_dx)          if ( (x > data->max_dx) || (x < data->min_dx)
464                  || (y > data->max_dy) || (y < data->min_dy) ) return;                  || (y > data->max_dy) || (y < data->min_dy) ) return;
465    
466          sad = sad32v_c(data->Cur, data->Ref + x/2 + (y/2)*(data->iEdgedWidth),          sad = sad32v_c(data->Cur, data->RefP[0] + (x>>1) + (y>>1)*(data->iEdgedWidth),
467                                                          data->iEdgedWidth, data->temp+1);                                                          data->iEdgedWidth, data->temp+1);
468    
469          if (sad < *(data->iMinSAD)) {          if (sad < *(data->iMinSAD)) {
# Line 482  Line 490 
490          const uint8_t *ReferenceF, *ReferenceB;          const uint8_t *ReferenceF, *ReferenceB;
491          VECTOR *current;          VECTOR *current;
492    
493          if ( (xf > data->max_dx) | (xf < data->min_dx)          if ((xf > data->max_dx) || (xf < data->min_dx) ||
494                  | (yf > data->max_dy) | (yf < data->min_dy) ) return;                  (yf > data->max_dy) || (yf < data->min_dy))
495                    return;
496    
497          if (!data->qpel_precision) {          if (!data->qpel_precision) {
498                  ReferenceF = GetReference(xf, yf, data);                  ReferenceF = GetReference(xf, yf, data);
# Line 528  Line 537 
537          const uint8_t *ReferenceB;          const uint8_t *ReferenceB;
538          VECTOR mvs, b_mvs;          VECTOR mvs, b_mvs;
539    
540          if (( x > 31) | ( x < -32) | ( y > 31) | (y < -32)) return;          if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return;
541    
542          for (k = 0; k < 4; k++) {          for (k = 0; k < 4; k++) {
543                  mvs.x = data->directmvF[k].x + x;                  mvs.x = data->directmvF[k].x + x;
# Line 541  Line 550 
550                          data->directmvB[k].y                          data->directmvB[k].y
551                          : mvs.y - data->referencemv[k].y);                          : mvs.y - data->referencemv[k].y);
552    
553                  if ( (mvs.x > data->max_dx) | (mvs.x < data->min_dx)                  if ((mvs.x > data->max_dx)   || (mvs.x < data->min_dx)   ||
554                          | (mvs.y > data->max_dy) | (mvs.y < data->min_dy)                          (mvs.y > data->max_dy)   || (mvs.y < data->min_dy)   ||
555                          | (b_mvs.x > data->max_dx) | (b_mvs.x < data->min_dx)                          (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx) ||
556                          | (b_mvs.y > data->max_dy) | (b_mvs.y < data->min_dy) ) return;                          (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) )
557                            return;
558    
559                  if (data->qpel) {                  if (data->qpel) {
560                          xcf += mvs.x/2; ycf += mvs.y/2;                          xcf += mvs.x/2; ycf += mvs.y/2;
# Line 586  Line 596 
596          const uint8_t *ReferenceB;          const uint8_t *ReferenceB;
597          VECTOR mvs, b_mvs;          VECTOR mvs, b_mvs;
598    
599          if (( x > 31) | ( x < -32) | ( y > 31) | (y < -32)) return;          if (( x > 31) || ( x < -32) || ( y > 31) || (y < -32)) return;
600    
601          mvs.x = data->directmvF[0].x + x;          mvs.x = data->directmvF[0].x + x;
602          b_mvs.x = ((x == 0) ?          b_mvs.x = ((x == 0) ?
# Line 598  Line 608 
608                  data->directmvB[0].y                  data->directmvB[0].y
609                  : mvs.y - data->referencemv[0].y);                  : mvs.y - data->referencemv[0].y);
610    
611          if ( (mvs.x > data->max_dx) | (mvs.x < data->min_dx)          if ( (mvs.x > data->max_dx) || (mvs.x < data->min_dx)
612                  | (mvs.y > data->max_dy) | (mvs.y < data->min_dy)                  || (mvs.y > data->max_dy) || (mvs.y < data->min_dy)
613                  | (b_mvs.x > data->max_dx) | (b_mvs.x < data->min_dx)                  || (b_mvs.x > data->max_dx) || (b_mvs.x < data->min_dx)
614                  | (b_mvs.y > data->max_dy) | (b_mvs.y < data->min_dy) ) return;                  || (b_mvs.y > data->max_dy) || (b_mvs.y < data->min_dy) ) return;
615    
616          if (data->qpel) {          if (data->qpel) {
617                  xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2);                  xcf = 4*(mvs.x/2); ycf = 4*(mvs.y/2);
# Line 635  Line 645 
645  CheckCandidateBits16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)  CheckCandidateBits16(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
646  {  {
647    
648          static int16_t in[64], coeff[64];          int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64;
649          int32_t bits = 0, sum;          int32_t bits = 0;
650          VECTOR * current;          VECTOR * current;
651          const uint8_t * ptr;          const uint8_t * ptr;
652          int i, cbp = 0, t, xc, yc;          int i, cbp = 0, t, xc, yc;
# Line 657  Line 667 
667          for(i = 0; i < 4; i++) {          for(i = 0; i < 4; i++) {
668                  int s = 8*((i&1) + (i>>1)*data->iEdgedWidth);                  int s = 8*((i&1) + (i>>1)*data->iEdgedWidth);
669                  transfer_8to16subro(in, data->Cur + s, ptr + s, data->iEdgedWidth);                  transfer_8to16subro(in, data->Cur + s, ptr + s, data->iEdgedWidth);
670                  fdct(in);                  bits += data->temp[i] = Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, i);
                 if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);  
                 else sum = quant4_inter(coeff, in, data->lambda16);  
                 if (sum > 0) {  
                         cbp |= 1 << (5 - i);  
                         bits += data->temp[i] = CodeCoeffInter_CalcBits(coeff, scan_tables[0]);  
                 } else data->temp[i] = 0;  
671          }          }
672    
673          bits += t = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);          bits += t = BITS_MULT*d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
674    
675            //8x8 blocks for inter4v mode
676            if (data->temp[0] + t < data->iMinSAD[1]) {
677                    data->iMinSAD[1] = data->temp[0] + t; current[1].x = x; current[1].y = y; }
678            if (data->temp[1] < data->iMinSAD[2]) {
679                    data->iMinSAD[2] = data->temp[1]; current[2].x = x; current[2].y = y; }
680            if (data->temp[2] < data->iMinSAD[3]) {
681                    data->iMinSAD[3] = data->temp[2]; current[3].x = x; current[3].y = y; }
682            if (data->temp[3] < data->iMinSAD[4]) {
683                    data->iMinSAD[4] = data->temp[3]; current[4].x = x; current[4].y = y; }
684    
685            bits += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len;
686    
687            if (bits >= data->iMinSAD[0]) return;
688    
689          if (bits < data->iMinSAD[0]) { // there is still a chance, adding chroma          //chroma
690                  xc = (xc >> 1) + roundtab_79[xc & 0x3];                  xc = (xc >> 1) + roundtab_79[xc & 0x3];
691                  yc = (yc >> 1) + roundtab_79[yc & 0x3];                  yc = (yc >> 1) + roundtab_79[yc & 0x3];
692    
693                  //chroma U                  //chroma U
694                  ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefCU, 0, 0, xc, yc,  data->iEdgedWidth/2, data->rounding);          ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefP[4], 0, 0, xc, yc,  data->iEdgedWidth/2, data->rounding);
695                  transfer_8to16subro(in, ptr, data->CurU, data->iEdgedWidth/2);                  transfer_8to16subro(in, ptr, data->CurU, data->iEdgedWidth/2);
696                  fdct(in);          bits += Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 4);
697                  if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);          if (bits >= data->iMinSAD[0]) return;
                 else sum = quant4_inter(coeff, in, data->lambda16);  
                 if (sum > 0) {  
                         cbp |= 1 << (5 - 4);  
                         bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);  
                 }  
698    
                 if (bits < data->iMinSAD[0]) {  
699                          //chroma V                          //chroma V
700                          ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefCV, 0, 0, xc, yc,  data->iEdgedWidth/2, data->rounding);          ptr = interpolate8x8_switch2(data->RefQ + 64, data->RefP[5], 0, 0, xc, yc,  data->iEdgedWidth/2, data->rounding);
701                          transfer_8to16subro(in, ptr, data->CurV, data->iEdgedWidth/2);                          transfer_8to16subro(in, ptr, data->CurV, data->iEdgedWidth/2);
702                          fdct(in);          bits += Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 5);
                         if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);  
                         else sum = quant4_inter(coeff, in, data->lambda16);  
                         if (sum > 0) {  
                                 cbp |= 1 << (5 - 5);  
                                 bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);  
                         }  
                 }  
         }  
703    
704          bits += cbpy_tab[15-(cbp>>2)].len;          bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len;
         bits += mcbpc_inter_tab[(MODE_INTER & 7) | ((cbp & 3) << 3)].len;  
705    
706          if (bits < data->iMinSAD[0]) {          if (bits < data->iMinSAD[0]) {
707                  data->iMinSAD[0] = bits;                  data->iMinSAD[0] = bits;
708                  current[0].x = x; current[0].y = y;                  current[0].x = x; current[0].y = y;
709                  *dir = Direction;                  *dir = Direction;
710          }          }
   
         if (data->temp[0] + t < data->iMinSAD[1]) {  
                 data->iMinSAD[1] = data->temp[0] + t; current[1].x = x; current[1].y = y; }  
         if (data->temp[1] < data->iMinSAD[2]) {  
                 data->iMinSAD[2] = data->temp[1]; current[2].x = x; current[2].y = y; }  
         if (data->temp[2] < data->iMinSAD[3]) {  
                 data->iMinSAD[3] = data->temp[2]; current[3].x = x; current[3].y = y; }  
         if (data->temp[3] < data->iMinSAD[4]) {  
                 data->iMinSAD[4] = data->temp[3]; current[4].x = x; current[4].y = y; }  
   
711  }  }
712  static void  static void
713  CheckCandidateBits8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)  CheckCandidateBits8(const int x, const int y, const int Direction, int * const dir, const SearchData * const data)
714  {  {
715    
716          static int16_t in[64], coeff[64];          int16_t *in = data->dctSpace, *coeff = data->dctSpace + 64;
717          int32_t sum, bits;          int32_t bits;
718          VECTOR * current;          VECTOR * current;
719          const uint8_t * ptr;          const uint8_t * ptr;
720          int cbp;          int cbp = 0;
721    
722          if ( (x > data->max_dx) || (x < data->min_dx)          if ( (x > data->max_dx) || (x < data->min_dx)
723                  || (y > data->max_dy) || (y < data->min_dy) ) return;                  || (y > data->max_dy) || (y < data->min_dy) ) return;
# Line 738  Line 731 
731          }          }
732    
733          transfer_8to16subro(in, data->Cur, ptr, data->iEdgedWidth);          transfer_8to16subro(in, data->Cur, ptr, data->iEdgedWidth);
734          fdct(in);          bits = Block_CalcBits(coeff, in, data->dctSpace + 128, data->iQuant, data->quant_type, &cbp, 5);
735          if (data->lambda8 == 0) sum = quant_inter(coeff, in, data->lambda16);          bits += BITS_MULT*d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);
         else sum = quant4_inter(coeff, in, data->lambda16);  
         if (sum > 0) {  
                 bits = CodeCoeffInter_CalcBits(coeff, scan_tables[0]);  
                 cbp = 1;  
         } else cbp = bits = 0;  
   
         bits += sum = d_mv_bits(x, y, data->predMV, data->iFcode, data->qpel^data->qpel_precision, 0);  
736    
737          if (bits < data->iMinSAD[0]) {          if (bits < data->iMinSAD[0]) {
738                  data->temp[0] = cbp;                  data->temp[0] = cbp;
# Line 926  Line 912 
912                                                          const uint32_t stride, const uint32_t iQuant, int rrv)                                                          const uint32_t stride, const uint32_t iQuant, int rrv)
913    
914  {  {
915            int offset = (x + y*stride)*8;
916          if(!rrv) {          if(!rrv) {
917                  uint32_t sadC = sad8(current->u + x*8 + y*stride*8,                  uint32_t sadC = sad8(current->u + offset,
918                                                  reference->u + x*8 + y*stride*8, stride);                                                  reference->u + offset, stride);
919                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;
920                  sadC += sad8(current->v + (x + y*stride)*8,                  sadC += sad8(current->v + offset,
921                                                  reference->v + (x + y*stride)*8, stride);                                                  reference->v + offset, stride);
922                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP) return 0;
923                  return 1;                  return 1;
924    
925          } else {          } else {
926                  uint32_t sadC = sad16(current->u + x*16 + y*stride*16,                  uint32_t sadC = sad16(current->u + 2*offset,
927                                                  reference->u + x*16 + y*stride*16, stride, 256*4096);                                                  reference->u + 2*offset, stride, 256*4096);
928                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;
929                  sadC += sad16(current->v + (x + y*stride)*16,                  sadC += sad16(current->v + 2*offset,
930                                                  reference->v + (x + y*stride)*16, stride, 256*4096);                                                  reference->v + 2*offset, stride, 256*4096);
931                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;                  if (sadC > iQuant * MAX_CHROMA_SAD_FOR_SKIP*4) return 0;
932                  return 1;                  return 1;
933          }          }
# Line 955  Line 942 
942          pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad;          pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = sad;
943  }  }
944    
945    static __inline void
946    ModeDecision(SearchData * const Data,
947                            MACROBLOCK * const pMB,
948                            const MACROBLOCK * const pMBs,
949                            const int x, const int y,
950                            const MBParam * const pParam,
951                            const uint32_t MotionFlags,
952                            const uint32_t GlobalFlags,
953                            const IMAGE * const pCurrent,
954                            const IMAGE * const pRef)
955    {
956            int mode = MODE_INTER;
957            int inter4v = (GlobalFlags & XVID_INTER4V) && (pMB->dquant == NO_CHANGE);
958            const uint32_t iQuant = pMB->quant;
959    
960            const int skip_possible = (!(GlobalFlags & XVID_GMC)) && (pMB->dquant == NO_CHANGE);
961    
962            if (!(GlobalFlags & XVID_MODEDECISION_BITS)) { //normal, fast, SAD-based mode decision
963                    int sad;
964                    int InterBias = MV16_INTER_BIAS;
965                    if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] +
966                            Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) {
967                            mode = MODE_INTER;
968                            sad = Data->iMinSAD[0];
969                    } else {
970                            mode = MODE_INTER4V;
971                            sad = Data->iMinSAD[1] + Data->iMinSAD[2] +
972                                                    Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant;
973                            Data->iMinSAD[0] = sad;
974                    }
975    
976                    // final skip decision, a.k.a. "the vector you found, really that good?"
977                    if (skip_possible && (pMB->sad16 < (int)iQuant * MAX_SAD00_FOR_SKIP))
978                            if ( (100*sad)/(pMB->sad16+1) > FINAL_SKIP_THRESH)
979                                    if (Data->chroma || SkipDecisionP(pCurrent, pRef, x, y, Data->iEdgedWidth/2, iQuant, Data->rrv)) {
980                                            mode = MODE_NOT_CODED;
981                                            sad = 0;
982                                    }
983    
984                    // intra decision
985    
986                    if (iQuant > 8) InterBias += 100 * (iQuant - 8); // to make high quants work
987                    if (y != 0)
988                            if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80;
989                    if (x != 0)
990                            if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80;
991    
992                    if (Data->chroma) InterBias += 50; // dev8(chroma) ???
993                    if (Data->rrv) InterBias *= 4;
994    
995                    if (InterBias < pMB->sad16) {
996                            int32_t deviation;
997                            if (!Data->rrv) deviation = dev16(Data->Cur, Data->iEdgedWidth);
998                            else deviation = dev16(Data->Cur, Data->iEdgedWidth) +
999                                    dev16(Data->Cur+16, Data->iEdgedWidth) +
1000                                    dev16(Data->Cur + 16*Data->iEdgedWidth, Data->iEdgedWidth) +
1001                                    dev16(Data->Cur+16+16*Data->iEdgedWidth, Data->iEdgedWidth);
1002    
1003                            if (deviation < (sad - InterBias)) mode = MODE_INTRA;
1004                    }
1005    
1006            } else { // BITS
1007    
1008                    int bits, intra, i;
1009                    VECTOR backup[5], *v;
1010                    Data->iQuant = iQuant;
1011    
1012                    v = Data->qpel ? Data->currentQMV : Data->currentMV;
1013                    for (i = 0; i < 5; i++) {
1014                            Data->iMinSAD[i] = 256*4096;
1015                            backup[i] = v[i];
1016                    }
1017    
1018                    bits = CountMBBitsInter(Data, pMBs, x, y, pParam, MotionFlags);
1019                    if (bits == 0)
1020                            mode = MODE_INTER; // quick stop
1021                    else {
1022                            if (inter4v) {
1023                                    int bits_inter4v = CountMBBitsInter4v(Data, pMB, pMBs, x, y, pParam, MotionFlags, backup);
1024                                    if (bits_inter4v < bits) { Data->iMinSAD[0] = bits = bits_inter4v; mode = MODE_INTER4V; }
1025                            }
1026    
1027                            intra = CountMBBitsIntra(Data);
1028    
1029                            if (intra < bits) { *Data->iMinSAD = bits = intra; mode = MODE_INTRA; }
1030                    }
1031            }
1032    
1033            if (Data->rrv) {
1034                            Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x);
1035                            Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y);
1036            }
1037    
1038            if (mode == MODE_INTER) {
1039                    pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0];
1040                    pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = Data->iMinSAD[0];
1041    
1042                    if(Data->qpel) {
1043                            pMB->qmvs[0] = pMB->qmvs[1]
1044                                    = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0];
1045                            pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x;
1046                            pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y;
1047                    } else {
1048                            pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x;
1049                            pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y;
1050                    }
1051    
1052            } else if (mode == MODE_INTER4V)
1053                    pMB->sad16 = Data->iMinSAD[0];
1054            else // INTRA, NOT_CODED
1055                    SkipMacroblockP(pMB, 0);
1056    
1057            pMB->mode = mode;
1058    }
1059    
1060  bool  bool
1061  MotionEstimation(MBParam * const pParam,  MotionEstimation(MBParam * const pParam,
1062                                   FRAMEINFO * const current,                                   FRAMEINFO * const current,
# Line 976  Line 1078 
1078          uint32_t x, y;          uint32_t x, y;
1079          uint32_t iIntra = 0;          uint32_t iIntra = 0;
1080          int32_t quant = current->quant, sad00;          int32_t quant = current->quant, sad00;
1081            int skip_thresh = INITIAL_SKIP_THRESH *
1082                    (current->global_flags & XVID_REDUCED ? 4:1) *
1083                    (current->global_flags & XVID_MODEDECISION_BITS ? 2:1);
1084    
1085          // some pre-initialized thingies for SearchP          // some pre-initialized thingies for SearchP
1086          int32_t temp[8];          int32_t temp[8];
1087          VECTOR currentMV[5];          VECTOR currentMV[5];
1088          VECTOR currentQMV[5];          VECTOR currentQMV[5];
1089          int32_t iMinSAD[5];          int32_t iMinSAD[5];
1090            DECLARE_ALIGNED_MATRIX(dct_space, 3, 64, int16_t, CACHE_LINE);
1091          SearchData Data;          SearchData Data;
1092          memset(&Data, 0, sizeof(SearchData));          memset(&Data, 0, sizeof(SearchData));
1093          Data.iEdgedWidth = iEdgedWidth;          Data.iEdgedWidth = iEdgedWidth;
# Line 994  Line 1100 
1100          Data.qpel = pParam->m_quarterpel;          Data.qpel = pParam->m_quarterpel;
1101          Data.chroma = MotionFlags & PMV_CHROMA16;          Data.chroma = MotionFlags & PMV_CHROMA16;
1102          Data.rrv = current->global_flags & XVID_REDUCED;          Data.rrv = current->global_flags & XVID_REDUCED;
1103            Data.dctSpace = dct_space;
1104            Data.quant_type = pParam->m_quant_type;
1105    
1106          if ((current->global_flags & XVID_REDUCED)) {          if ((current->global_flags & XVID_REDUCED)) {
1107                  mb_width = (pParam->width + 31) / 32;                  mb_width = (pParam->width + 31) / 32;
# Line 1028  Line 1136 
1136    
1137                          sad00 = pMB->sad16;                          sad00 = pMB->sad16;
1138    
1139                          if (!(current->global_flags & XVID_LUMIMASKING)) {                          if (!(current->global_flags & XVID_LUMIMASKING))
1140                                  pMB->dquant = NO_CHANGE;                                  pMB->dquant = NO_CHANGE;
1141                          } else {                          else {
1142                                  if (pMB->dquant != NO_CHANGE) {                                  if (pMB->dquant != NO_CHANGE) {
1143                                          quant += DQtab[pMB->dquant];                                          quant += DQtab[pMB->dquant];
1144                                          if (quant > 31) quant = 31;                                          if (quant > 31) quant = 31;
1145                                          else if (quant < 1) quant = 1;                                          else if (quant < 1) quant = 1;
1146                                  }                                  }
1147                          }                          }
1148                          pMB->quant = current->quant;                          pMB->quant = quant;
1149    
1150  //initial skip decision  //initial skip decision
1151  /* no early skip for GMC (global vector = skip vector is unknown!)  */  /* no early skip for GMC (global vector = skip vector is unknown!)  */
1152                          if (!(current->global_flags & XVID_GMC))        { /* no fast SKIP for S(GMC)-VOPs */                          if (!(current->global_flags & XVID_GMC))        { /* no fast SKIP for S(GMC)-VOPs */
1153                                  if (pMB->dquant == NO_CHANGE && sad00 < pMB->quant * INITIAL_SKIP_THRESH * (Data.rrv ? 4:1) )                                  if (pMB->dquant == NO_CHANGE && sad00 < quant * skip_thresh)
1154                                          if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) {                                          if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv)) {
1155                                                  SkipMacroblockP(pMB, sad00);                                                  SkipMacroblockP(pMB, sad00);
1156                                                  continue;                                                  continue;
# Line 1050  Line 1158 
1158                          }                          }
1159    
1160                          SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x,                          SearchP(pRef, pRefH->y, pRefV->y, pRefHV->y, pCurrent, x,
1161                                                  y, MotionFlags, current->global_flags, pMB->quant,                                                  y, MotionFlags, current->global_flags,
1162                                                  &Data, pParam, pMBs, reference->mbs,                                                  &Data, pParam, pMBs, reference->mbs, pMB);
1163                                                  current->global_flags & XVID_INTER4V, pMB);  
1164                            ModeDecision(&Data, pMB, pMBs, x, y, pParam,
1165  /* final skip decision, a.k.a. "the vector you found, really that good?" */                                                          MotionFlags, current->global_flags,
1166                          if (!(current->global_flags & XVID_GMC))        {                                                          pCurrent, pRef);
                                 if ( pMB->dquant == NO_CHANGE && sad00 < pMB->quant * MAX_SAD00_FOR_SKIP) {  
                                         if (!(current->global_flags & XVID_MODEDECISION_BITS)) {  
                                                 if ( (100*pMB->sad16)/(sad00+1) > FINAL_SKIP_THRESH * (Data.rrv ? 4:1) )  
                                                         if (Data.chroma || SkipDecisionP(pCurrent, pRef, x, y, iEdgedWidth/2, pMB->quant, Data.rrv))  
                                                                 SkipMacroblockP(pMB, sad00);  
                                         } else { // BITS mode decision  
                                                 if (pMB->sad16 > 10)  
                                                         SkipMacroblockP(pMB, sad00);  // more than 10 bits would be used for this MB - skip  
1167    
                                         }  
                                 }  
                         }  
1168                          if (pMB->mode == MODE_INTRA)                          if (pMB->mode == MODE_INTRA)
1169                                  if (++iIntra > iLimit) return 1;                                  if (++iIntra > iLimit) return 1;
1170                  }                  }
# Line 1140  Line 1237 
1237          }          }
1238  }  }
1239    
 static int  
 ModeDecision(const uint32_t iQuant, SearchData * const Data,  
                 int inter4v,  
                 MACROBLOCK * const pMB,  
                 const MACROBLOCK * const pMBs,  
                 const int x, const int y,  
                 const MBParam * const pParam,  
                 const uint32_t MotionFlags,  
                 const uint32_t GlobalFlags)  
 {  
   
         int mode = MODE_INTER;  
   
         if (!(GlobalFlags & XVID_MODEDECISION_BITS)) { //normal, fast, SAD-based mode decision  
                 int intra = 0;  
                 int sad;  
                 int InterBias = MV16_INTER_BIAS;  
                 if (inter4v == 0 || Data->iMinSAD[0] < Data->iMinSAD[1] + Data->iMinSAD[2] +  
                         Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant) {  
                                 mode = 0; //inter  
                                 sad = Data->iMinSAD[0];  
                 } else {  
                         mode = MODE_INTER4V;  
                         sad = Data->iMinSAD[1] + Data->iMinSAD[2] +  
                                                 Data->iMinSAD[3] + Data->iMinSAD[4] + IMV16X16 * (int32_t)iQuant;  
                         Data->iMinSAD[0] = sad;  
                 }  
   
                 /* intra decision */  
   
                 if (iQuant > 8) InterBias += 100 * (iQuant - 8); // to make high quants work  
                 if (y != 0)  
                         if ((pMB - pParam->mb_width)->mode == MODE_INTRA ) InterBias -= 80;  
                 if (x != 0)  
                         if ((pMB - 1)->mode == MODE_INTRA ) InterBias -= 80;  
   
                 if (Data->chroma) InterBias += 50; // to compensate bigger SAD  
                 if (Data->rrv) InterBias *= 4;  
   
                 if (InterBias < pMB->sad16) {  
                         int32_t deviation;  
                         if (!Data->rrv) deviation = dev16(Data->Cur, Data->iEdgedWidth);  
                         else deviation = dev16(Data->Cur, Data->iEdgedWidth) +  
                                 dev16(Data->Cur+8, Data->iEdgedWidth) +  
                                 dev16(Data->Cur + 8*Data->iEdgedWidth, Data->iEdgedWidth) +  
                                 dev16(Data->Cur+8+8*Data->iEdgedWidth, Data->iEdgedWidth);  
   
                         if (deviation < (sad - InterBias))  return MODE_INTRA;// intra  
                 }  
                 return mode;  
   
         } else {  
   
                 int bits, intra, i;  
                 VECTOR backup[5], *v;  
                 Data->lambda16 = iQuant;  
                 Data->lambda8 = pParam->m_quant_type;  
   
                 v = Data->qpel ? Data->currentQMV : Data->currentMV;  
                 for (i = 0; i < 5; i++) {  
                         Data->iMinSAD[i] = 256*4096;  
                         backup[i] = v[i];  
                 }  
   
                 bits = CountMBBitsInter(Data, pMBs, x, y, pParam, MotionFlags);  
                 if (bits == 0) return MODE_INTER; // quick stop  
   
                 if (inter4v) {  
                         int inter4v = CountMBBitsInter4v(Data, pMB, pMBs, x, y, pParam, MotionFlags, backup);  
                         if (inter4v < bits) { Data->iMinSAD[0] = bits = inter4v; mode = MODE_INTER4V; }  
                 }  
   
   
                 intra = CountMBBitsIntra(Data);  
   
                 if (intra < bits) { *Data->iMinSAD = bits = intra; return MODE_INTRA; }  
   
                 return mode;  
         }  
 }  
   
1240  static void  static void
1241  SearchP(const IMAGE * const pRef,  SearchP(const IMAGE * const pRef,
1242                  const uint8_t * const pRefH,                  const uint8_t * const pRefH,
# Line 1231  Line 1247 
1247                  const int y,                  const int y,
1248                  const uint32_t MotionFlags,                  const uint32_t MotionFlags,
1249                  const uint32_t GlobalFlags,                  const uint32_t GlobalFlags,
                 const uint32_t iQuant,  
1250                  SearchData * const Data,                  SearchData * const Data,
1251                  const MBParam * const pParam,                  const MBParam * const pParam,
1252                  const MACROBLOCK * const pMBs,                  const MACROBLOCK * const pMBs,
1253                  const MACROBLOCK * const prevMBs,                  const MACROBLOCK * const prevMBs,
                 int inter4v,  
1254                  MACROBLOCK * const pMB)                  MACROBLOCK * const pMB)
1255  {  {
1256    
1257          int i, iDirection = 255, mask, threshA;          int i, iDirection = 255, mask, threshA;
1258          VECTOR pmv[7];          VECTOR pmv[7];
1259            int inter4v = (GlobalFlags & XVID_INTER4V) && (pMB->dquant == NO_CHANGE);
1260    
1261          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
1262                                                  pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);                                                  pParam->width, pParam->height, Data->iFcode - Data->qpel, 0, Data->rrv);
# Line 1254  Line 1269 
1269          Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;          Data->CurV = pCur->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1270          Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;          Data->CurU = pCur->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1271    
1272          Data->Ref = pRef->y + (x + Data->iEdgedWidth*y) * 16*i;          Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16*i;
1273          Data->RefH = pRefH + (x + Data->iEdgedWidth*y) * 16*i;          Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16*i;
1274          Data->RefV = pRefV + (x + Data->iEdgedWidth*y) * 16*i;          Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16*i;
1275          Data->RefHV = pRefHV + (x + Data->iEdgedWidth*y) * 16*i;          Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16*i;
1276          Data->RefCV = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;          Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1277          Data->RefCU = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8*i;          Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8*i;
1278    
1279          Data->lambda16 = lambda_vec16[iQuant];          Data->lambda16 = lambda_vec16[pMB->quant];
1280          Data->lambda8 = lambda_vec8[iQuant];          Data->lambda8 = lambda_vec8[pMB->quant];
1281          Data->qpel_precision = 0;          Data->qpel_precision = 0;
1282    
1283          if (pMB->dquant != NO_CHANGE) inter4v = 0;          memset(Data->currentMV, 0, 5*sizeof(VECTOR));
   
         for(i = 0; i < 5; i++)  
                 Data->currentMV[i].x = Data->currentMV[i].y = 0;  
1284    
1285          if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0);          if (Data->qpel) Data->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, 0);
1286          else Data->predMV = pmv[0];          else Data->predMV = pmv[0];
# Line 1280  Line 1292 
1292          Data->iMinSAD[3] = pMB->sad8[2];          Data->iMinSAD[3] = pMB->sad8[2];
1293          Data->iMinSAD[4] = pMB->sad8[3];          Data->iMinSAD[4] = pMB->sad8[3];
1294    
1295          if ((!(GlobalFlags & XVID_MODEDECISION_BITS)) || (x | y)) {          if ((!(GlobalFlags & XVID_MODEDECISION_BITS)) && (x | y)) {
1296                  threshA = Data->temp[0]; // that's where we keep this SAD atm                  threshA = Data->temp[0]; // that's where we keep this SAD atm
1297                  if (threshA < 512) threshA = 512;                  if (threshA < 512) threshA = 512;
1298                  else if (threshA > 1024) threshA = 1024;                  else if (threshA > 1024) threshA = 1024;
# Line 1305  Line 1317 
1317    
1318          if ((Data->iMinSAD[0] <= threshA) ||          if ((Data->iMinSAD[0] <= threshA) ||
1319                          (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) &&                          (MVequal(Data->currentMV[0], (prevMBs+x+y*pParam->mb_width)->mvs[0]) &&
1320                          (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16))) {                          (Data->iMinSAD[0] < (prevMBs+x+y*pParam->mb_width)->sad16)))
1321                  if (!(GlobalFlags & XVID_MODEDECISION_BITS)) inter4v = 0;       }                  inter4v = 0;
1322          else {          else {
1323    
1324                  MainSearchFunc * MainSearchPtr;                  MainSearchFunc * MainSearchPtr;
# Line 1352  Line 1364 
1364          }          }
1365    
1366          if (MotionFlags & PMV_HALFPELREFINE16)          if (MotionFlags & PMV_HALFPELREFINE16)
                 if ((!(MotionFlags & HALFPELREFINE16_BITS)) || Data->iMinSAD[0] < 200*(int)iQuant)  
1367                          SubpelRefine(Data);                          SubpelRefine(Data);
1368    
1369          for(i = 0; i < 5; i++) {          for(i = 0; i < 5; i++) {
# Line 1360  Line 1371 
1371                  Data->currentQMV[i].y = 2 * Data->currentMV[i].y;                  Data->currentQMV[i].y = 2 * Data->currentMV[i].y;
1372          }          }
1373    
1374          if (MotionFlags & PMV_QUARTERPELREFINE16)          if (Data->qpel) {
                 if ((!(MotionFlags & QUARTERPELREFINE16_BITS)) || (Data->iMinSAD[0] < 200*(int)iQuant)) {  
                         Data->qpel_precision = 1;  
1375                          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,                          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
1376                                          pParam->width, pParam->height, Data->iFcode, 1, 0);                                          pParam->width, pParam->height, Data->iFcode, 1, 0);
1377                    Data->qpel_precision = 1;
1378                    if (MotionFlags & PMV_QUARTERPELREFINE16)
1379                          SubpelRefine(Data);                          SubpelRefine(Data);
1380                  }                  }
1381    
1382          if ((!(GlobalFlags & XVID_MODEDECISION_BITS)) && (Data->iMinSAD[0] < (int32_t)iQuant * 30)) inter4v = 0;          if (Data->iMinSAD[0] < (int32_t)pMB->quant * 30)
1383                    inter4v = 0;
         if (inter4v && (!(GlobalFlags & XVID_MODEDECISION_BITS) ||  
                         (!(MotionFlags & QUARTERPELREFINE8_BITS)) || (!(MotionFlags & HALFPELREFINE8_BITS)) ||  
                         ((!(MotionFlags & EXTSEARCH_BITS)) && (!(MotionFlags&PMV_EXTSEARCH8)) ))) {  
                 // if decision is BITS-based and all refinement steps will be done in BITS domain, there is no reason to call this loop  
1384    
1385            if (inter4v) {
1386                  SearchData Data8;                  SearchData Data8;
1387                  memcpy(&Data8, Data, sizeof(SearchData)); //quick copy of common data                  memcpy(&Data8, Data, sizeof(SearchData)); //quick copy of common data
1388    
# Line 1385  Line 1392 
1392                  Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8);                  Search8(Data, 2*x + 1, 2*y + 1, MotionFlags, pParam, pMB, pMBs, 3, &Data8);
1393    
1394                  if ((Data->chroma) && (!(GlobalFlags & XVID_MODEDECISION_BITS))) {                  if ((Data->chroma) && (!(GlobalFlags & XVID_MODEDECISION_BITS))) {
1395                          // chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, there is no reason to compute it                          // chroma is only used for comparsion to INTER. if the comparsion will be done in BITS domain, it will not be used
1396                          int sumx = 0, sumy = 0;                          int sumx = 0, sumy = 0;
                         const int div = 1 + Data->qpel;  
                         const VECTOR * const mv = Data->qpel ? pMB->qmvs : pMB->mvs;  
1397    
1398                          for (i = 0; i < 4; i++) {                          if (Data->qpel)
1399                                  sumx += mv[i].x / div;                                  for (i = 1; i < 5; i++) {
1400                                  sumy += mv[i].y / div;                                          sumx += Data->currentQMV[i].x/2;
1401                                            sumy += Data->currentQMV[i].y/2;
1402                                    }
1403                            else
1404                                    for (i = 1; i < 5; i++) {
1405                                            sumx += Data->currentMV[i].x;
1406                                            sumy += Data->currentMV[i].y;
1407                          }                          }
1408    
1409                          Data->iMinSAD[1] += ChromaSAD(  (sumx >> 3) + roundtab_76[sumx & 0xf],                          Data->iMinSAD[1] += ChromaSAD(  (sumx >> 3) + roundtab_76[sumx & 0xf],
1410                                                                                          (sumy >> 3) + roundtab_76[sumy & 0xf], Data);                                                                                          (sumy >> 3) + roundtab_76[sumy & 0xf], Data);
1411                  }                  }
1412          }          } else Data->iMinSAD[1] = 4096*256;
   
         inter4v = ModeDecision(iQuant, Data, inter4v, pMB, pMBs, x, y, pParam, MotionFlags, GlobalFlags);  
   
         if (Data->rrv) {  
                         Data->currentMV[0].x = RRV_MV_SCALEDOWN(Data->currentMV[0].x);  
                         Data->currentMV[0].y = RRV_MV_SCALEDOWN(Data->currentMV[0].y);  
         }  
   
         if (inter4v == MODE_INTER) {  
                 pMB->mode = MODE_INTER;  
                 pMB->mvs[0] = pMB->mvs[1] = pMB->mvs[2] = pMB->mvs[3] = Data->currentMV[0];  
                 pMB->sad16 = pMB->sad8[0] = pMB->sad8[1] = pMB->sad8[2] = pMB->sad8[3] = Data->iMinSAD[0];  
   
                 if(Data->qpel) {  
                         pMB->qmvs[0] = pMB->qmvs[1]  
                                 = pMB->qmvs[2] = pMB->qmvs[3] = Data->currentQMV[0];  
                         pMB->pmvs[0].x = Data->currentQMV[0].x - Data->predMV.x;  
                         pMB->pmvs[0].y = Data->currentQMV[0].y - Data->predMV.y;  
                 } else {  
                         pMB->pmvs[0].x = Data->currentMV[0].x - Data->predMV.x;  
                         pMB->pmvs[0].y = Data->currentMV[0].y - Data->predMV.y;  
                 }  
   
         } else if (inter4v == MODE_INTER4V) {  
                 pMB->mode = MODE_INTER4V;  
                 pMB->sad16 = Data->iMinSAD[0];  
         } else { // INTRA mode  
                 SkipMacroblockP(pMB, 0); // not skip, but similar enough  
                 pMB->mode = MODE_INTRA;  
         }  
   
1413  }  }
1414    
1415  static void  static void
# Line 1460  Line 1440 
1440          *(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10;          *(Data->iMinSAD) += (Data->lambda8 * i * (*Data->iMinSAD + NEIGH_8X8_BIAS))>>10;
1441    
1442          if (MotionFlags & (PMV_EXTSEARCH8|PMV_HALFPELREFINE8|PMV_QUARTERPELREFINE8)) {          if (MotionFlags & (PMV_EXTSEARCH8|PMV_HALFPELREFINE8|PMV_QUARTERPELREFINE8)) {
                 if (Data->rrv) i = 2; else i = 1;  
1443    
1444                  Data->Ref = OldData->Ref + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));                  if (Data->rrv) i = 16; else i = 8;
1445                  Data->RefH = OldData->RefH + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));  
1446                  Data->RefV = OldData->RefV + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));                  Data->RefP[0] = OldData->RefP[0] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1447                  Data->RefHV = OldData->RefHV + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));                  Data->RefP[1] = OldData->RefP[1] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1448                    Data->RefP[2] = OldData->RefP[2] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1449                    Data->RefP[3] = OldData->RefP[3] + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1450    
1451                  Data->Cur = OldData->Cur + i * 8 * ((block&1) + Data->iEdgedWidth*(block>>1));                  Data->Cur = OldData->Cur + i * ((block&1) + Data->iEdgedWidth*(block>>1));
1452                  Data->qpel_precision = 0;                  Data->qpel_precision = 0;
1453    
1454                  get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8,                  get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 8,
# Line 1601  Line 1582 
1582          Data->qpel_precision = 0;          Data->qpel_precision = 0;
1583          Data->temp[5] = Data->temp[6] = Data->temp[7] = 256*4096; // reset chroma-sad cache          Data->temp[5] = Data->temp[6] = Data->temp[7] = 256*4096; // reset chroma-sad cache
1584    
1585          Data->Ref = pRef->y + (x + y * Data->iEdgedWidth) * 16;          Data->RefP[0] = pRef->y + (x + Data->iEdgedWidth*y) * 16;
1586          Data->RefH = pRefH + (x + y * Data->iEdgedWidth) * 16;          Data->RefP[2] = pRefH + (x + Data->iEdgedWidth*y) * 16;
1587          Data->RefV = pRefV + (x + y * Data->iEdgedWidth) * 16;          Data->RefP[1] = pRefV + (x + Data->iEdgedWidth*y) * 16;
1588          Data->RefHV = pRefHV + (x + y * Data->iEdgedWidth) * 16;          Data->RefP[3] = pRefHV + (x + Data->iEdgedWidth*y) * 16;
1589          Data->RefCU = pRef->u + (x + y * Data->iEdgedWidth/2) * 8;          Data->RefP[4] = pRef->u + (x + y * (Data->iEdgedWidth/2)) * 8;
1590          Data->RefCV = pRef->v + (x + y * Data->iEdgedWidth/2) * 8;          Data->RefP[5] = pRef->v + (x + y * (Data->iEdgedWidth/2)) * 8;
1591    
1592          Data->predMV = *predMV;          Data->predMV = *predMV;
1593    
# Line 1688  Line 1669 
1669    
1670          for (k = 0; k < 4; k++) {          for (k = 0; k < 4; k++) {
1671                  dy += Data->directmvF[k].y / div;                  dy += Data->directmvF[k].y / div;
1672                  dx += Data->directmvF[0].x / div;                  dx += Data->directmvF[k].x / div;
1673                  b_dy += Data->directmvB[0].y / div;                  b_dy += Data->directmvB[k].y / div;
1674                  b_dx += Data->directmvB[0].x / div;                  b_dx += Data->directmvB[k].x / div;
1675          }          }
1676    
1677          dy = (dy >> 3) + roundtab_76[dy & 0xf];          dy = (dy >> 3) + roundtab_76[dy & 0xf];
# Line 1710  Line 1691 
1691                                          b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2,                                          b_Ref->v + (y*8 + b_dy/2) * stride + x*8 + b_dx/2,
1692                                          stride);                                          stride);
1693    
1694          if (sum < 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) pMB->mode = MODE_DIRECT_NONE_MV; //skipped          if (sum < 2 * MAX_CHROMA_SAD_FOR_SKIP * pMB->quant) {
1695                    pMB->mode = MODE_DIRECT_NONE_MV; //skipped
1696                    for (k = 0; k < 4; k++) {
1697                            pMB->qmvs[k] = pMB->mvs[k];
1698                            pMB->b_qmvs[k] = pMB->b_mvs[k];
1699                    }
1700            }
1701  }  }
1702    
1703  static __inline uint32_t  static __inline uint32_t
# Line 1738  Line 1725 
1725          MainSearchFunc *MainSearchPtr;          MainSearchFunc *MainSearchPtr;
1726    
1727          *Data->iMinSAD = 256*4096;          *Data->iMinSAD = 256*4096;
1728          Data->Ref = f_Ref->y + k;          Data->RefP[0] = f_Ref->y + k;
1729          Data->RefH = f_RefH + k;          Data->RefP[2] = f_RefH + k;
1730          Data->RefV = f_RefV + k;          Data->RefP[1] = f_RefV + k;
1731          Data->RefHV = f_RefHV + k;          Data->RefP[3] = f_RefHV + k;
1732          Data->bRef = b_Ref->y + k;          Data->b_RefP[0] = b_Ref->y + k;
1733          Data->bRefH = b_RefH + k;          Data->b_RefP[2] = b_RefH + k;
1734          Data->bRefV = b_RefV + k;          Data->b_RefP[1] = b_RefV + k;
1735          Data->bRefHV = b_RefHV + k;          Data->b_RefP[3] = b_RefHV + k;
1736          Data->RefCU = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;          Data->RefP[4] = f_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;
1737          Data->RefCV = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;          Data->RefP[5] = f_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;
1738          Data->b_RefCU = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;          Data->b_RefP[4] = b_Ref->u + (x + (Data->iEdgedWidth/2) * y) * 8;
1739          Data->b_RefCV = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;          Data->b_RefP[5] = b_Ref->v + (x + (Data->iEdgedWidth/2) * y) * 8;
1740    
1741          k = Data->qpel ? 4 : 2;          k = Data->qpel ? 4 : 2;
1742          Data->max_dx = k * (pParam->width - x * 16);          Data->max_dx = k * (pParam->width - x * 16);
# Line 1788  Line 1775 
1775          CheckCandidate(0, 0, 255, &k, Data);          CheckCandidate(0, 0, 255, &k, Data);
1776    
1777  // initial (fast) skip decision  // initial (fast) skip decision
1778          if (*Data->iMinSAD < pMB->quant * INITIAL_SKIP_THRESH * (2 + Data->chroma?1:0)) {          if (*Data->iMinSAD < pMB->quant * INITIAL_SKIP_THRESH * (Data->chroma?3:2)) {
1779                  //possible skip                  //possible skip
1780                  if (Data->chroma) {                  if (Data->chroma) {
1781                          pMB->mode = MODE_DIRECT_NONE_MV;                          pMB->mode = MODE_DIRECT_NONE_MV;
# Line 1799  Line 1786 
1786                  }                  }
1787          }          }
1788    
1789            *Data->iMinSAD += Data->lambda16;
1790          skip_sad = *Data->iMinSAD;          skip_sad = *Data->iMinSAD;
1791    
1792  //      DIRECT MODE DELTA VECTOR SEARCH.  //      DIRECT MODE DELTA VECTOR SEARCH.
# Line 1879  Line 1867 
1867          fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode;          fData->iFcode = bData.bFcode = fcode; fData->bFcode = bData.iFcode = bcode;
1868    
1869          i = (x + y * fData->iEdgedWidth) * 16;          i = (x + y * fData->iEdgedWidth) * 16;
         bData.bRef = fData->Ref = f_Ref->y + i;  
         bData.bRefH = fData->RefH = f_RefH + i;  
         bData.bRefV = fData->RefV = f_RefV + i;  
         bData.bRefHV = fData->RefHV = f_RefHV + i;  
         bData.Ref = fData->bRef = b_Ref->y + i;  
         bData.RefH = fData->bRefH = b_RefH + i;  
         bData.RefV = fData->bRefV = b_RefV + i;  
         bData.RefHV = fData->bRefHV = b_RefHV + i;  
         bData.b_RefCU = fData->RefCU = f_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;  
         bData.b_RefCV = fData->RefCV = f_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;  
         bData.RefCU = fData->b_RefCU = b_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;  
         bData.RefCV = fData->b_RefCV = b_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;  
1870    
1871            bData.b_RefP[0] = fData->RefP[0] = f_Ref->y + i;
1872            bData.b_RefP[2] = fData->RefP[2] = f_RefH + i;
1873            bData.b_RefP[1] = fData->RefP[1] = f_RefV + i;
1874            bData.b_RefP[3] = fData->RefP[3] = f_RefHV + i;
1875            bData.RefP[0] = fData->b_RefP[0] = b_Ref->y + i;
1876            bData.RefP[2] = fData->b_RefP[2] = b_RefH + i;
1877            bData.RefP[1] = fData->b_RefP[1] = b_RefV + i;
1878            bData.RefP[3] = fData->b_RefP[3] = b_RefHV + i;
1879            bData.b_RefP[4] = fData->RefP[4] = f_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;
1880            bData.b_RefP[5] = fData->RefP[5] = f_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;
1881            bData.RefP[4] = fData->b_RefP[4] = b_Ref->u + (x + (fData->iEdgedWidth/2) * y) * 8;
1882            bData.RefP[5] = fData->b_RefP[5] = b_Ref->v + (x + (fData->iEdgedWidth/2) * y) * 8;
1883    
1884          bData.bpredMV = fData->predMV = *f_predMV;          bData.bpredMV = fData->predMV = *f_predMV;
1885          fData->bpredMV = bData.predMV = *b_predMV;          fData->bpredMV = bData.predMV = *b_predMV;
# Line 2125  Line 2113 
2113    
2114          int i, mask;          int i, mask;
2115          VECTOR pmv[3];          VECTOR pmv[3];
2116          MACROBLOCK * pMB = &pMBs[x + y * pParam->mb_width];          MACROBLOCK * const pMB = &pMBs[x + y * pParam->mb_width];
2117    
2118          for (i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR;          for (i = 0; i < 5; i++) Data->iMinSAD[i] = MV_MAX_ERROR;
2119    
# Line 2139  Line 2127 
2127                          else Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); //else median                          else Data->predMV = get_pmv2(pMBs, pParam->mb_width, 0, x, y, 0); //else median
2128    
2129          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
2130                                  pParam->width, pParam->height, Data->iFcode - pParam->m_quarterpel, 0, Data->rrv);                                  pParam->width, pParam->height, Data->iFcode - pParam->m_quarterpel, 0, 0);
2131    
2132          Data->Cur = pCur + (x + y * pParam->edged_width) * 16;          Data->Cur = pCur + (x + y * pParam->edged_width) * 16;
2133          Data->Ref = pRef + (x + y * pParam->edged_width) * 16;          Data->RefP[0] = pRef + (x + y * pParam->edged_width) * 16;
2134    
2135          pmv[1].x = EVEN(pMB->mvs[0].x);          pmv[1].x = EVEN(pMB->mvs[0].x);
2136          pmv[1].y = EVEN(pMB->mvs[0].y);          pmv[1].y = EVEN(pMB->mvs[0].y);
# Line 2152  Line 2140 
2140    
2141          CheckCandidate32I(0, 0, 255, &i, Data);          CheckCandidate32I(0, 0, 255, &i, Data);
2142    
2143          if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP * 4) {          if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) {
2144    
2145                  if (!(mask = make_mask(pmv, 1)))                  if (!(mask = make_mask(pmv, 1)))
2146                          CheckCandidate32I(pmv[1].x, pmv[1].y, mask, &i, Data);                          CheckCandidate32I(pmv[1].x, pmv[1].y, mask, &i, Data);
2147                  if (!(mask = make_mask(pmv, 2)))                  if (!(mask = make_mask(pmv, 2)))
2148                          CheckCandidate32I(pmv[2].x, pmv[2].y, mask, &i, Data);                          CheckCandidate32I(pmv[2].x, pmv[2].y, mask, &i, Data);
2149    
2150                  if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP * 4) // diamond only if needed                  if (*Data->iMinSAD > 4 * MAX_SAD00_FOR_SKIP) // diamond only if needed
2151                          DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i);                          DiamondSearch(Data->currentMV->x, Data->currentMV->y, Data, i);
2152            }
2153    
2154                  for (i = 0; i < 4; i++) {                  for (i = 0; i < 4; i++) {
2155                          MACROBLOCK * MB = &pMBs[x + (i&1) + (y+(i>>1)) * pParam->mb_width];                          MACROBLOCK * MB = &pMBs[x + (i&1) + (y+(i>>1)) * pParam->mb_width];
# Line 2169  Line 2158 
2158                          MB->sad16 = Data->iMinSAD[i+1];                          MB->sad16 = Data->iMinSAD[i+1];
2159                  }                  }
2160          }          }
 }  
2161    
2162  #define INTRA_BIAS              2500  #define INTRA_THRESH    2200
2163  #define INTRA_THRESH    1500  #define INTER_THRESH    50
2164  #define INTER_THRESH    1400  #define INTRA_THRESH2   95
2165    
2166  int  int
2167  MEanalysis(     const IMAGE * const pRef,  MEanalysis(     const IMAGE * const pRef,
2168                          FRAMEINFO * const Current,                          const FRAMEINFO * const Current,
2169                          MBParam * const pParam,                          const MBParam * const pParam,
2170                          int maxIntra, //maximum number if non-I frames                          const int maxIntra, //maximum number if non-I frames
2171                          int intraCount, //number of non-I frames after last I frame; 0 if we force P/B frame                          const int intraCount, //number of non-I frames after last I frame; 0 if we force P/B frame
2172                          int bCount) // number of B frames in a row                          const int bCount,  // number of B frames in a row
2173                            const int b_thresh)
2174  {  {
2175          uint32_t x, y, intra = 0;          uint32_t x, y, intra = 0;
2176          int sSAD = 0;          int sSAD = 0;
2177          MACROBLOCK * const pMBs = Current->mbs;          MACROBLOCK * const pMBs = Current->mbs;
2178          const IMAGE * const pCurrent = &Current->image;          const IMAGE * const pCurrent = &Current->image;
2179          int IntraThresh = INTRA_THRESH, InterThresh = INTER_THRESH;          int IntraThresh = INTRA_THRESH, InterThresh = INTER_THRESH + b_thresh;
2180            int s = 0, blocks = 0;
2181            int complexity = 0;
2182    
2183          int32_t iMinSAD[5], temp[5];          int32_t iMinSAD[5], temp[5];
2184          VECTOR currentMV[5];          VECTOR currentMV[5];
# Line 2196  Line 2187 
2187          Data.currentMV = currentMV;          Data.currentMV = currentMV;
2188          Data.iMinSAD = iMinSAD;          Data.iMinSAD = iMinSAD;
2189          Data.iFcode = Current->fcode;          Data.iFcode = Current->fcode;
         Data.rrv = Current->global_flags & XVID_REDUCED;  
2190          Data.temp = temp;          Data.temp = temp;
2191          CheckCandidate = CheckCandidate32I;          CheckCandidate = CheckCandidate32I;
2192    
2193          if (intraCount != 0 && intraCount < 10) // we're right after an I frame  
2194                  IntraThresh += 4 * (intraCount - 10) * (intraCount - 10);          if (intraCount != 0) {
2195                    if (intraCount < 10) // we're right after an I frame
2196                            IntraThresh += 15* (intraCount - 10) * (intraCount - 10);
2197          else          else
2198                  if ( 5*(maxIntra - intraCount) < maxIntra) // we're close to maximum. 2 sec when max is 10 sec                  if ( 5*(maxIntra - intraCount) < maxIntra) // we're close to maximum. 2 sec when max is 10 sec
2199                          IntraThresh -= (IntraThresh * (maxIntra - 5*(maxIntra - intraCount)))/maxIntra;                                  IntraThresh -= (IntraThresh * (maxIntra - 8*(maxIntra - intraCount)))/maxIntra;
2200            }
2201    
2202          InterThresh += 400 * (1 - bCount);          InterThresh -= 12 * bCount;
2203          if (InterThresh < 300) InterThresh = 300;          if (InterThresh < 15 + b_thresh) InterThresh = 15 + b_thresh;
2204    
2205          if (sadInit) (*sadInit) ();          if (sadInit) (*sadInit) ();
2206    
2207          for (y = 1; y < pParam->mb_height-1; y += 2) {          for (y = 1; y < pParam->mb_height-1; y += 2) {
2208                  for (x = 1; x < pParam->mb_width-1; x += 2) {                  for (x = 1; x < pParam->mb_width-1; x += 2) {
2209                          int i;                          int i;
2210                            blocks += 10;
2211    
2212                          if (bCount == 0) pMBs[x + y * pParam->mb_width].mvs[0] = zeroMV;                          if (bCount == 0) pMBs[x + y * pParam->mb_width].mvs[0] = zeroMV;
2213                            else { //extrapolation of the vector found for last frame
2214                                    pMBs[x + y * pParam->mb_width].mvs[0].x =
2215                                            (pMBs[x + y * pParam->mb_width].mvs[0].x * (bCount+1) ) / bCount;
2216                                    pMBs[x + y * pParam->mb_width].mvs[0].y =
2217                                            (pMBs[x + y * pParam->mb_width].mvs[0].y * (bCount+1) ) / bCount;
2218                            }
2219    
2220                          MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, &Data);                          MEanalyzeMB(pRef->y, pCurrent->y, x, y, pParam, pMBs, &Data);
2221    
2222                          for (i = 0; i < 4; i++) {                          for (i = 0; i < 4; i++) {
2223                                  int dev;                                  int dev;
2224                                  MACROBLOCK *pMB = &pMBs[x+(i&1) + (y+(i>>1)) * pParam->mb_width];                                  MACROBLOCK *pMB = &pMBs[x+(i&1) + (y+(i>>1)) * pParam->mb_width];
                                 if (pMB->sad16 > IntraThresh) {  
2225                                          dev = dev16(pCurrent->y + (x + (i&1) + (y + (i>>1)) * pParam->edged_width) * 16,                                          dev = dev16(pCurrent->y + (x + (i&1) + (y + (i>>1)) * pParam->edged_width) * 16,
2226                                                                          pParam->edged_width);                                                                          pParam->edged_width);
2227    
2228                                    complexity += dev;
2229                                          if (dev + IntraThresh < pMB->sad16) {                                          if (dev + IntraThresh < pMB->sad16) {
2230                                                  pMB->mode = MODE_INTRA;                                                  pMB->mode = MODE_INTRA;
2231                                                  if (++intra > (pParam->mb_height-2)*(pParam->mb_width-2)/2) return I_VOP;                                          if (++intra > ((pParam->mb_height-2)*(pParam->mb_width-2))/2) return I_VOP;
                                         }  
2232                                  }                                  }
2233    
2234                                    if (pMB->mvs[0].x == 0 && pMB->mvs[0].y == 0)
2235                                            if (dev > 500 && pMB->sad16 < 1000)
2236                                                    sSAD += 1000;
2237    
2238                                  sSAD += pMB->sad16;                                  sSAD += pMB->sad16;
2239                          }                          }
2240                  }                  }
2241          }          }
2242          sSAD /= (pParam->mb_height-2)*(pParam->mb_width-2);          complexity >>= 7;
2243  //      if (sSAD > IntraThresh + INTRA_BIAS) return I_VOP;  
2244            sSAD /= complexity + 4*blocks;
2245    
2246            if (intraCount > 12 && sSAD > INTRA_THRESH2 ) return I_VOP;
2247          if (sSAD > InterThresh ) return P_VOP;          if (sSAD > InterThresh ) return P_VOP;
2248          emms();          emms();
2249          return B_VOP;          return B_VOP;
   
2250  }  }
2251    
2252    
# Line 2271  Line 2278 
2278          double meanx,meany;          double meanx,meany;
2279          int num,oldnum;          int num,oldnum;
2280    
2281          if (!MBmask) { fprintf(stderr,"Mem error\n"); return gmc;}          if (!MBmask) {  fprintf(stderr,"Mem error\n");
2282                                            gmc.duv[0].x= gmc.duv[0].y =
2283                                                    gmc.duv[1].x= gmc.duv[1].y =
2284                                                    gmc.duv[2].x= gmc.duv[2].y = 0;
2285                                            return gmc; }
2286    
2287  // filter mask of all blocks  // filter mask of all blocks
2288    
2289          for (my = 1; my < MBh-1; my++)          for (my = 1; my < (uint32_t)MBh-1; my++)
2290          for (mx = 1; mx < MBw-1; mx++)          for (mx = 1; mx < (uint32_t)MBw-1; mx++)
2291          {          {
2292                  const int mbnum = mx + my * MBw;                  const int mbnum = mx + my * MBw;
2293                  const MACROBLOCK *pMB = &pMBs[mbnum];                  const MACROBLOCK *pMB = &pMBs[mbnum];
# Line 2285  Line 2296 
2296                  if (pMB->mode == MODE_INTRA || pMB->mode == MODE_NOT_CODED)                  if (pMB->mode == MODE_INTRA || pMB->mode == MODE_NOT_CODED)
2297                          continue;                          continue;
2298    
2299                  if ( ( (ABS(mv.x -   (pMB-1)->mvs[0].x) < deltax) && (ABS(mv.y -   (pMB-1)->mvs[0].y) < deltay) )                  if ( ( (abs(mv.x -   (pMB-1)->mvs[0].x) < deltax) && (abs(mv.y -   (pMB-1)->mvs[0].y) < deltay) )
2300                  &&   ( (ABS(mv.x -   (pMB+1)->mvs[0].x) < deltax) && (ABS(mv.y -   (pMB+1)->mvs[0].y) < deltay) )                  &&   ( (abs(mv.x -   (pMB+1)->mvs[0].x) < deltax) && (abs(mv.y -   (pMB+1)->mvs[0].y) < deltay) )
2301                  &&   ( (ABS(mv.x - (pMB-MBw)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB-MBw)->mvs[0].y) < deltay) )                  &&   ( (abs(mv.x - (pMB-MBw)->mvs[0].x) < deltax) && (abs(mv.y - (pMB-MBw)->mvs[0].y) < deltay) )
2302                  &&   ( (ABS(mv.x - (pMB+MBw)->mvs[0].x) < deltax) && (ABS(mv.y - (pMB+MBw)->mvs[0].y) < deltay) ) )                  &&   ( (abs(mv.x - (pMB+MBw)->mvs[0].x) < deltax) && (abs(mv.y - (pMB+MBw)->mvs[0].y) < deltay) ) )
2303                          MBmask[mbnum]=1;                          MBmask[mbnum]=1;
2304          }          }
2305    
2306          for (my = 1; my < MBh-1; my++)          for (my = 1; my < (uint32_t)MBh-1; my++)
2307          for (mx = 1; mx < MBw-1; mx++)          for (mx = 1; mx < (uint32_t)MBw-1; mx++)
2308          {          {
2309                  const uint8_t *const pCur = current->image.y + 16*my*pParam->edged_width + 16*mx;                  const uint8_t *const pCur = current->image.y + 16*my*pParam->edged_width + 16*mx;
2310    
# Line 2301  Line 2312 
2312                  if (!MBmask[mbnum])                  if (!MBmask[mbnum])
2313                          continue;                          continue;
2314    
2315                  if (sad16 ( pCur, pCur+1 , pParam->edged_width, 65536) <= grad )                  if (sad16 ( pCur, pCur+1 , pParam->edged_width, 65536) <= (uint32_t)grad )
2316                          MBmask[mbnum] = 0;                          MBmask[mbnum] = 0;
2317                  if (sad16 ( pCur, pCur+pParam->edged_width, pParam->edged_width, 65536) <= grad )                  if (sad16 ( pCur, pCur+pParam->edged_width, pParam->edged_width, 65536) <= (uint32_t)grad )
2318                          MBmask[mbnum] = 0;                          MBmask[mbnum] = 0;
2319    
2320          }          }
# Line 2314  Line 2325 
2325    
2326          a = b = c = n = 0;          a = b = c = n = 0;
2327          DtimesF[0] = DtimesF[1] = DtimesF[2] = DtimesF[3] = 0.;          DtimesF[0] = DtimesF[1] = DtimesF[2] = DtimesF[3] = 0.;
2328          for (my = 0; my < MBh; my++)          for (my = 0; my < (uint32_t)MBh; my++)
2329                  for (mx = 0; mx < MBw; mx++)                  for (mx = 0; mx < (uint32_t)MBw; mx++)
2330                  {                  {
2331                          const int mbnum = mx + my * MBw;                          const int mbnum = mx + my * MBw;
2332                          const MACROBLOCK *pMB = &pMBs[mbnum];                          const MACROBLOCK *pMB = &pMBs[mbnum];
# Line 2352  Line 2363 
2363    
2364          meanx = meany = 0.;          meanx = meany = 0.;
2365          oldnum = 0;          oldnum = 0;
2366          for (my = 0; my < MBh; my++)          for (my = 0; my < (uint32_t)MBh; my++)
2367                  for (mx = 0; mx < MBw; mx++)                  for (mx = 0; mx < (uint32_t)MBw; mx++)
2368                  {                  {
2369                          const int mbnum = mx + my * MBw;                          const int mbnum = mx + my * MBw;
2370                          const MACROBLOCK *pMB = &pMBs[mbnum];                          const MACROBLOCK *pMB = &pMBs[mbnum];
# Line 2363  Line 2374 
2374                                  continue;                                  continue;
2375    
2376                          oldnum++;                          oldnum++;
2377                          meanx += ABS(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x );                          meanx += fabs(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x );
2378                          meany += ABS(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y );                          meany += fabs(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y );
2379                  }                  }
2380    
2381          if (4*meanx > oldnum)   /* better fit than 0.25 is useless */          if (4*meanx > oldnum)   /* better fit than 0.25 is useless */
# Line 2381  Line 2392 
2392          fprintf(stderr,"meanx = %8.5f  meany = %8.5f   %d\n",meanx,meany, oldnum);          fprintf(stderr,"meanx = %8.5f  meany = %8.5f   %d\n",meanx,meany, oldnum);
2393  */  */
2394          num = 0;          num = 0;
2395          for (my = 0; my < MBh; my++)          for (my = 0; my < (uint32_t)MBh; my++)
2396                  for (mx = 0; mx < MBw; mx++)                  for (mx = 0; mx < (uint32_t)MBw; mx++)
2397                  {                  {
2398                          const int mbnum = mx + my * MBw;                          const int mbnum = mx + my * MBw;
2399                          const MACROBLOCK *pMB = &pMBs[mbnum];                          const MACROBLOCK *pMB = &pMBs[mbnum];
# Line 2391  Line 2402 
2402                          if (!MBmask[mbnum])                          if (!MBmask[mbnum])
2403                                  continue;                                  continue;
2404    
2405                          if  ( ( ABS(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x ) > meanx )                          if  ( ( fabs(( sol[0] + (16*mx+8)*sol[1] + (16*my+8)*sol[2] ) - mv.x ) > meanx )
2406                             || ( ABS(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y ) > meany ) )                                  || ( fabs(( sol[3] - (16*mx+8)*sol[2] + (16*my+8)*sol[1] ) - mv.y ) > meany ) )
2407                                  MBmask[mbnum]=0;                                  MBmask[mbnum]=0;
2408                          else                          else
2409                                  num++;                                  num++;
# Line 2442  Line 2453 
2453                  Data->qpel_precision = 1;                  Data->qpel_precision = 1;
2454                  CheckCandidateBits16(Data->currentQMV[0].x, Data->currentQMV[0].y, 255, &iDirection, Data);                  CheckCandidateBits16(Data->currentQMV[0].x, Data->currentQMV[0].y, 255, &iDirection, Data);
2455    
                 //checking if this vector is perfect. if it is, we stop.  
                 if (Data->temp[0] == 0 && Data->temp[1] == 0 && Data->temp[2] == 0 && Data->temp[3] == 0)  
                         return 0; //quick stop  
   
2456                  if (MotionFlags & (HALFPELREFINE16_BITS | EXTSEARCH_BITS)) { //we have to prepare for halfpixel-precision search                  if (MotionFlags & (HALFPELREFINE16_BITS | EXTSEARCH_BITS)) { //we have to prepare for halfpixel-precision search
2457                          for(i = 0; i < 5; i++) bsad[i] = Data->iMinSAD[i];                          for(i = 0; i < 5; i++) bsad[i] = Data->iMinSAD[i];
2458                          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,                          get_range(&Data->min_dx, &Data->max_dx, &Data->min_dy, &Data->max_dy, x, y, 16,
# Line 2458  Line 2465 
2465          } else { // not qpel          } else { // not qpel
2466    
2467                  CheckCandidateBits16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data);                  CheckCandidateBits16(Data->currentMV[0].x, Data->currentMV[0].y, 255, &iDirection, Data);
                 //checking if this vector is perfect. if it is, we stop.  
                 if (Data->temp[0] == 0 && Data->temp[1] == 0 && Data->temp[2] == 0 && Data->temp[3] == 0) {  
                         return 0; //inter  
                 }  
2468          }          }
2469    
2470          if (MotionFlags&EXTSEARCH_BITS) SquareSearch(Data->currentMV->x, Data->currentMV->y, Data, iDirection);          if (MotionFlags&EXTSEARCH_BITS) SquareSearch(Data->currentMV->x, Data->currentMV->y, Data, iDirection);
# Line 2491  Line 2494 
2494          return Data->iMinSAD[0];          return Data->iMinSAD[0];
2495  }  }
2496    
   
2497  static int  static int
2498  CountMBBitsInter4v(const SearchData * const Data,  CountMBBitsInter4v(const SearchData * const Data,
2499                                          MACROBLOCK * const pMB, const MACROBLOCK * const pMBs,                                          MACROBLOCK * const pMB, const MACROBLOCK * const pMBs,
# Line 2503  Line 2505 
2505          int cbp = 0, bits = 0, t = 0, i, iDirection;          int cbp = 0, bits = 0, t = 0, i, iDirection;
2506          SearchData Data2, *Data8 = &Data2;          SearchData Data2, *Data8 = &Data2;
2507          int sumx = 0, sumy = 0;          int sumx = 0, sumy = 0;
2508          int16_t in[64], coeff[64];          int16_t *in = Data->dctSpace, *coeff = Data->dctSpace + 64;
2509            uint8_t * ptr;
2510    
2511          memcpy(Data8, Data, sizeof(SearchData));          memcpy(Data8, Data, sizeof(SearchData));
2512          CheckCandidate = CheckCandidateBits8;          CheckCandidate = CheckCandidateBits8;
2513    
2514          for (i = 0; i < 4; i++) {          for (i = 0; i < 4; i++) { //for all luma blocks
2515    
2516                  Data8->iMinSAD = Data->iMinSAD + i + 1;                  Data8->iMinSAD = Data->iMinSAD + i + 1;
2517                  Data8->currentMV = Data->currentMV + i + 1;                  Data8->currentMV = Data->currentMV + i + 1;
2518                  Data8->currentQMV = Data->currentQMV + i + 1;                  Data8->currentQMV = Data->currentQMV + i + 1;
2519                  Data8->Cur = Data->Cur + 8*((i&1) + (i>>1)*Data->iEdgedWidth);                  Data8->Cur = Data->Cur + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2520                  Data8->Ref = Data->Ref + 8*((i&1) + (i>>1)*Data->iEdgedWidth);                  Data8->RefP[0] = Data->RefP[0] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2521                  Data8->RefH = Data->RefH + 8*((i&1) + (i>>1)*Data->iEdgedWidth);                  Data8->RefP[2] = Data->RefP[2] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2522                  Data8->RefV = Data->RefV + 8*((i&1) + (i>>1)*Data->iEdgedWidth);                  Data8->RefP[1] = Data->RefP[1] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2523                  Data8->RefHV = Data->RefHV + 8*((i&1) + (i>>1)*Data->iEdgedWidth);                  Data8->RefP[3] = Data->RefP[3] + 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2524    
2525                  if(Data->qpel) {                  if(Data->qpel) {
2526                          Data8->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, i);                          Data8->predMV = get_qpmv2(pMBs, pParam->mb_width, 0, x, y, i);
# Line 2531  Line 2535 
2535                  get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,                  get_range(&Data8->min_dx, &Data8->max_dx, &Data8->min_dy, &Data8->max_dy, 2*x + (i&1), 2*y + (i>>1), 8,
2536                                          pParam->width, pParam->height, Data8->iFcode, Data8->qpel, 0);                                          pParam->width, pParam->height, Data8->iFcode, Data8->qpel, 0);
2537    
2538                  *Data8->iMinSAD += t;                  *Data8->iMinSAD += BITS_MULT*t;
2539    
2540                  Data8->qpel_precision = Data8->qpel;                  Data8->qpel_precision = Data8->qpel;
2541                  // checking the vector which has been found by SAD-based 8x8 search (if it's different than the one found so far)                  // checking the vector which has been found by SAD-based 8x8 search (if it's different than the one found so far)
2542                  if (Data8->qpel) {                  {
2543                          if (!(Data8->currentQMV->x == backup[i+1].x && Data8->currentQMV->y == backup[i+1].y))                          VECTOR *v = Data8->qpel ? Data8->currentQMV : Data8->currentMV;
2544                                  CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8);                          if (!MVequal (*v, backup[i+1]) )
                 } else {  
                         if (!(Data8->currentMV->x == backup[i+1].x && Data8->currentMV->y == backup[i+1].y))  
2545                                  CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8);                                  CheckCandidateBits8(backup[i+1].x, backup[i+1].y, 255, &iDirection, Data8);
2546                  }                  }
2547    
# Line 2558  Line 2560 
2560                                  if (MotionFlags & PMV_EXTSEARCH8 && MotionFlags & EXTSEARCH_BITS)                                  if (MotionFlags & PMV_EXTSEARCH8 && MotionFlags & EXTSEARCH_BITS)
2561                                          SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255);                                          SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255);
2562    
2563                                  if (MotionFlags & HALFPELREFINE8_BITS) SubpelRefine(Data8);                                  if (MotionFlags & HALFPELREFINE8_BITS)
2564                                            SubpelRefine(Data8);
2565    
2566                                  if(s > *Data8->iMinSAD) { //we have found a better match                                  if(s > *Data8->iMinSAD) { //we have found a better match
2567                                          Data8->currentQMV->x = 2*Data8->currentMV->x;                                          Data8->currentQMV->x = 2*Data8->currentMV->x;
# Line 2572  Line 2575 
2575                          }                          }
2576                          if (MotionFlags & QUARTERPELREFINE8_BITS) SubpelRefine(Data8);                          if (MotionFlags & QUARTERPELREFINE8_BITS) SubpelRefine(Data8);
2577    
2578                  } else // not qpel                  } else { // not qpel
2579                          if (MotionFlags & HALFPELREFINE8_BITS) SubpelRefine(Data8); //halfpel mode, halfpel refinement  
2580                            if (MotionFlags & PMV_EXTSEARCH8 && MotionFlags & EXTSEARCH_BITS) //extsearch
2581                                    SquareSearch(Data8->currentMV->x, Data8->currentMV->x, Data8, 255);
2582    
2583                            if (MotionFlags & HALFPELREFINE8_BITS)
2584                                    SubpelRefine(Data8); //halfpel refinement
2585                    }
2586    
2587                  //checking vector equal to predicion                  //checking vector equal to predicion
2588                  if (i != 0 && MotionFlags & CHECKPREDICTION_BITS) {                  if (i != 0 && MotionFlags & CHECKPREDICTION_BITS) {
2589                          const VECTOR * v = Data->qpel ? Data8->currentQMV : Data8->currentMV;                          const VECTOR * v = Data->qpel ? Data8->currentQMV : Data8->currentMV;
2590                          if (!(Data8->predMV.x == v->x && Data8->predMV.y == v->y))                          if (!MVequal(*v, Data8->predMV))
2591                                  CheckCandidateBits8(Data8->predMV.x, Data8->predMV.y, 255, &iDirection, Data8);                                  CheckCandidateBits8(Data8->predMV.x, Data8->predMV.y, 255, &iDirection, Data8);
2592                  }                  }
2593    
2594                  bits += *Data8->iMinSAD;                  bits += *Data8->iMinSAD;
2595                  if (bits >= Data->iMinSAD[0]) break; // no chances for INTER4V                  if (bits >= Data->iMinSAD[0]) return bits; // no chances for INTER4V
2596    
2597                  // MB structures for INTER4V mode; we have to set them here, we don't have predictor anywhere else                  // MB structures for INTER4V mode; we have to set them here, we don't have predictor anywhere else
2598                  if(Data->qpel) {                  if(Data->qpel) {
# Line 2601  Line 2610 
2610                  pMB->mvs[i] = *Data8->currentMV;                  pMB->mvs[i] = *Data8->currentMV;
2611                  pMB->sad8[i] = 4 * *Data8->iMinSAD;                  pMB->sad8[i] = 4 * *Data8->iMinSAD;
2612                  if (Data8->temp[0]) cbp |= 1 << (5 - i);                  if (Data8->temp[0]) cbp |= 1 << (5 - i);
         }  
2613    
2614          if (bits < *Data->iMinSAD) { // there is still a chance for inter4v mode. let's check chroma          } // /for all luma blocks
2615                  const uint8_t * ptr;  
2616            bits += BITS_MULT*xvid_cbpy_tab[15-(cbp>>2)].len;
2617    
2618            // let's check chroma
2619                  sumx = (sumx >> 3) + roundtab_76[sumx & 0xf];                  sumx = (sumx >> 3) + roundtab_76[sumx & 0xf];
2620                  sumy = (sumy >> 3) + roundtab_76[sumy & 0xf];                  sumy = (sumy >> 3) + roundtab_76[sumy & 0xf];
2621    
2622                  //chroma U                  //chroma U
2623                  ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefCU, 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);          ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefP[4], 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);
2624                  transfer_8to16subro(in, Data->CurU, ptr, Data->iEdgedWidth/2);                  transfer_8to16subro(in, Data->CurU, ptr, Data->iEdgedWidth/2);
2625                  fdct(in);          bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4);
2626                  if (Data->lambda8 == 0) i = quant_inter(coeff, in, Data->lambda16);  
2627                  else i = quant4_inter(coeff, in, Data->lambda16);          if (bits >= *Data->iMinSAD) return bits;
                 if (i > 0) {  
                         bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);  
                         cbp |= 1 << (5 - 4);  
                 }  
2628    
                 if (bits < *Data->iMinSAD) { // still possible  
2629                          //chroma V                          //chroma V
2630                          ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefCV, 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);          ptr = interpolate8x8_switch2(Data->RefQ + 64, Data->RefP[5], 0, 0, sumx, sumy, Data->iEdgedWidth/2, Data->rounding);
2631                          transfer_8to16subro(in, Data->CurV, ptr, Data->iEdgedWidth/2);                          transfer_8to16subro(in, Data->CurV, ptr, Data->iEdgedWidth/2);
2632                          fdct(in);          bits += Block_CalcBits(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5);
2633                          if (Data->lambda8 == 0) i = quant_inter(coeff, in, Data->lambda16);  
2634                          else i = quant4_inter(coeff, in, Data->lambda16);          bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTER4V & 7) | ((cbp & 3) << 3)].len;
                         if (i > 0) {  
                                 bits += CodeCoeffInter_CalcBits(coeff, scan_tables[0]);  
                                 cbp |= 1 << (5 - 5);  
                         }  
                         bits += cbpy_tab[15-(cbp>>2)].len;  
                         bits += mcbpc_inter_tab[(MODE_INTER4V & 7) | ((cbp & 3) << 3)].len;  
                 }  
         }  
2635    
2636          return bits;          return bits;
2637  }  }
2638    
   
2639  static int  static int
2640  CountMBBitsIntra(const SearchData * const Data)  CountMBBitsIntra(const SearchData * const Data)
2641  {  {
2642          int bits = 1; //this one is ac/dc prediction flag. always 1.          int bits = BITS_MULT*1; //this one is ac/dc prediction flag bit
2643          int cbp = 0, i, t, dc = 0, b_dc = 1024;          int cbp = 0, i, dc = 0;
2644          const uint32_t iQuant = Data->lambda16;          int16_t *in = Data->dctSpace, * coeff = Data->dctSpace + 64;
         int16_t in[64], coeff[64];  
2645    
2646          for(i = 0; i < 4; i++) {          for(i = 0; i < 4; i++) {
                 uint32_t iDcScaler = get_dc_scaler(iQuant, 1);  
   
2647                  int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth);                  int s = 8*((i&1) + (i>>1)*Data->iEdgedWidth);
2648                  transfer_8to16copy(in, Data->Cur + s, Data->iEdgedWidth);                  transfer_8to16copy(in, Data->Cur + s, Data->iEdgedWidth);
2649                  fdct(in);                  bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, i, &dc);
2650                  b_dc = dc;  
2651                  dc = in[0];                  if (bits >= Data->iMinSAD[0]) return bits;
                 in[0] -= b_dc;  
                 if (Data->lambda8 == 0) quant_intra_c(coeff, in, iQuant, iDcScaler);  
                 else quant4_intra_c(coeff, in, iQuant, iDcScaler);  
   
                 b_dc = dc;  
                 dc = coeff[0];  
                 if (i != 0) coeff[0] -= b_dc;  
   
                 bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcy_tab[coeff[0] + 255].len;;  
                 Data->temp[i] = t;  
                 if (t != 0)  cbp |= 1 << (5 - i);  
                 if (bits >= Data->iMinSAD[0]) break;  
2652          }          }
2653    
2654          if (bits < Data->iMinSAD[0]) { // INTRA still looks good, let's add chroma          bits += BITS_MULT*xvid_cbpy_tab[cbp>>2].len;
2655                  uint32_t iDcScaler = get_dc_scaler(iQuant, 0);  
2656                  //chroma U                  //chroma U
2657                  transfer_8to16copy(in, Data->CurU, Data->iEdgedWidth/2);                  transfer_8to16copy(in, Data->CurU, Data->iEdgedWidth/2);
2658                  fdct(in);          bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 4, &dc);
2659                  in[0] -= 1024;  
2660                  if (Data->lambda8 == 0) quant_intra(coeff, in, iQuant, iDcScaler);          if (bits >= Data->iMinSAD[0]) return bits;
                 else quant4_intra(coeff, in, iQuant, iDcScaler);  
   
                 bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcc_tab[coeff[0] + 255].len;  
                 if (t != 0) cbp |= 1 << (5 - 4);  
                 Data->temp[4] = t;  
2661    
                 if (bits < Data->iMinSAD[0]) {  
2662                          //chroma V                          //chroma V
2663                          transfer_8to16copy(in, Data->CurV, Data->iEdgedWidth/2);                          transfer_8to16copy(in, Data->CurV, Data->iEdgedWidth/2);
2664                          fdct(in);          bits += Block_CalcBitsIntra(coeff, in, Data->dctSpace + 128, Data->iQuant, Data->quant_type, &cbp, 5, &dc);
                         in[0] -= 1024;  
                         if (Data->lambda8 == 0) quant_intra(coeff, in, iQuant, iDcScaler);  
                         else quant4_intra(coeff, in, iQuant, iDcScaler);  
   
                         bits += t = CodeCoeffIntra_CalcBits(coeff, scan_tables[0]) + dcc_tab[coeff[0] + 255].len;  
                         if (t != 0) cbp |= 1 << (5 - 5);  
   
                         Data->temp[5] = t;  
2665    
2666                          bits += t = cbpy_tab[cbp>>2].len;          bits += BITS_MULT*mcbpc_inter_tab[(MODE_INTRA & 7) | ((cbp & 3) << 3)].len;
                         Data->temp[6] = t;  
   
                         bits += t = mcbpc_inter_tab[(MODE_INTRA & 7) | ((cbp & 3) << 3)].len;  
                         Data->temp[7] = t;  
   
                 }  
         }  
2667    
2668          return bits;          return bits;
2669  }  }

Legend:
Removed from v.1.44.2.53  
changed lines
  Added in v.1.73

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4