[cvs] / xvidcore / src / plugins / plugin_2pass2.c Repository:
ViewVC logotype

Diff of /xvidcore/src/plugins/plugin_2pass2.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.1.2.16, Thu May 29 12:38:44 2003 UTC revision 1.4, Fri Jun 11 08:44:30 2004 UTC
# Line 29  Line 29 
29   *   *
30   *****************************************************************************/   *****************************************************************************/
31    
32    #define BQUANT_PRESCALE
33    #undef COMPENSATE_FORMULA
34    
35    /* forces second pass not to be bigger than first */
36    #undef PASS_SMALLER
37    
38    /* automtically alters overflow controls (strength and improvement/degradation)
39            to fight most common problems without user's knowladge */
40    #define SMART_OVERFLOW_SETTING
41    
42  #include <stdio.h>  #include <stdio.h>
43  #include <math.h>  #include <math.h>
44  #include <limits.h>  #include <limits.h>
# Line 37  Line 47 
47  #include "../image/image.h"  #include "../image/image.h"
48    
49  /*****************************************************************************  /*****************************************************************************
50   * Some constants   * Some default settings
51   ****************************************************************************/   ****************************************************************************/
52    
53  #define DEFAULT_KEYFRAME_BOOST 0  #define DEFAULT_KEYFRAME_BOOST 0
54  #define DEFAULT_PAYBACK_METHOD XVID_PAYBACK_PROP  #define DEFAULT_OVERFLOW_CONTROL_STRENGTH 10
 #define DEFAULT_BITRATE_PAYBACK_DELAY 250  
55  #define DEFAULT_CURVE_COMPRESSION_HIGH 0  #define DEFAULT_CURVE_COMPRESSION_HIGH 0
56  #define DEFAULT_CURVE_COMPRESSION_LOW 0  #define DEFAULT_CURVE_COMPRESSION_LOW 0
57  #define DEFAULT_MAX_OVERFLOW_IMPROVEMENT 60  #define DEFAULT_MAX_OVERFLOW_IMPROVEMENT 10
58  #define DEFAULT_MAX_OVERFLOW_DEGRADATION 60  #define DEFAULT_MAX_OVERFLOW_DEGRADATION 10
59    
60  /* Keyframe settings */  /* Keyframe settings */
 #define DEFAULT_KFTRESHOLD 10  
61  #define DEFAULT_KFREDUCTION 20  #define DEFAULT_KFREDUCTION 20
62  #define DEFAULT_MIN_KEY_INTERVAL 1  #define DEFAULT_KFTHRESHOLD 1
63    
64    /*****************************************************************************
65     * Some default constants (can be tuned)
66     ****************************************************************************/
67    
68    /* Specify the invariant part of the headers bits (header+MV)
69     * as  hlength/cst */
70    #define INVARIANT_HEADER_PART_IVOP 1 /* factor 1.0f   */
71    #define INVARIANT_HEADER_PART_PVOP 2 /* factor 0.5f   */
72    #define INVARIANT_HEADER_PART_BVOP 8 /* factor 0.125f */
73    
74  /*****************************************************************************  /*****************************************************************************
75   * Structures   * Structures
# Line 63  Line 81 
81      int quant;              /* first pass quant */      int quant;              /* first pass quant */
82          int blks[3];                    /* k,m,y blks */          int blks[3];                    /* k,m,y blks */
83      int length;             /* first pass length */      int length;             /* first pass length */
84            int invariant;          /* what we assume as being invariant between the two passes, it's a sub part of header + MV bits */
85      int scaled_length;      /* scaled length */      int scaled_length;      /* scaled length */
86      int desired_length;     /* desired length; calcuated during encoding */          int desired_length;     /* desired length; calculated during encoding */
87            int error;
88    
89      int zone_mode;   /* XVID_ZONE_xxx */      int zone_mode;   /* XVID_ZONE_xxx */
90      double weight;      double weight;
91  } stat_t;  } twopass_stat_t;
92    
93  /* Context struct */  /* Context struct */
94  typedef struct  typedef struct
95  {  {
96      xvid_plugin_2pass2_t param;      xvid_plugin_2pass2_t param;
97    
98      /* constant statistical data */          /*----------------------------------
99          int num_frames;           * constant statistical data
100          int num_keyframes;           *--------------------------------*/
         uint64_t target;        /* target filesize */  
101    
102          int count[3];   /* count of each frame types */          /* Number of frames of the sequence */
103          uint64_t tot_length[3];  /* total length of each frame types */          int num_frames;
         double avg_length[3];   /* avg */  
         int min_length[3];  /* min frame length of each frame types */  
         uint64_t tot_scaled_length[3];  /* total scaled length of each frame type */  
         int max_length;     /* max frame size */  
   
         /* zone statistical data */  
         double avg_weight;  /* average weight */  
         int64_t tot_quant;   /* total length used by XVID_ZONE_QUANT zones */  
104    
105            /* Number of Intra frames of the sequence */
106            int num_keyframes;
107    
108          double curve_comp_scale;          /* Target filesize to reach */
109          double movie_curve;          uint64_t target;
110    
111          /* dynamic */          /* Count of each frame types */
112            int count[3];
113    
114            /* Total length of each frame types (1st pass) */
115            uint64_t tot_length[3];
116            uint64_t tot_invariant[3];
117    
118            /* Average length of each frame types (used first for 1st pass data and
119             * then for scaled averages */
120            double avg_length[3];
121    
122            /* Minimum frame length allowed for each frame type */
123            int min_length[3];
124    
125            /* Total bytes per frame type once the curve has been scaled
126             * NB: advanced parameters do not change this value. This field
127             *     represents the total scaled w/o any advanced settings */
128            uint64_t tot_scaled_length[3];
129    
130            /* Maximum observed frame size observed during the first pass, the RC
131             * will try tp force all frame sizes in the second pass to be under that
132             * limit */
133            int max_length;
134    
135            /*----------------------------------
136             * Zones statistical data
137             *--------------------------------*/
138    
139            /* Total length used by XVID_ZONE_QUANT zones */
140            uint64_t tot_quant;
141            uint64_t tot_quant_invariant;
142    
143            /* Holds the total amount of frame bytes, zone weighted (only scalable
144             * part of frame bytes) */
145            uint64_t tot_weighted;
146    
147            /*----------------------------------
148             * Advanced settings helper ratios
149             *--------------------------------*/
150    
151            /* This the ratio that has to be applied to all p/b frames in order
152             * to reserve/retrieve bits for/from keyframe boosting and consecutive
153             * keyframe penalty */
154            double pb_iboost_tax_ratio;
155    
156            /* This the ratio to apply to all b/p frames in order to respect the
157             * assymetric curve compression while respecting a target filesize
158             * NB: The assymetric delta gain has to be computed before this ratio
159             *     is applied, and then the delta is added to the scaled size */
160            double assymetric_tax_ratio;
161    
162            /*----------------------------------
163             * Data from the stats file kept
164             * into RAM for easy access
165             *--------------------------------*/
166    
167            /* Array of keyframe locations
168             * eg: rc->keyframe_locations[100] returns the frame number of the 100th
169             *     keyframe */
170          int * keyframe_locations;          int * keyframe_locations;
         stat_t * stats;  
171    
172            /* Index of the last keyframe used in the keyframe_location */
173            int KF_idx;
174    
175            /* Array of all 1st pass data file -- see the twopass_stat_t structure
176             * definition for more details */
177            twopass_stat_t * stats;
178    
179            /*----------------------------------
180             * Hysteresis helpers
181             *--------------------------------*/
182    
183            /* This field holds the int2float conversion errors of each quant per
184             * frame type, this allow the RC to keep track of rouding error and thus
185             * increase or decrease the chosen quant according to this residue */
186          double quant_error[3][32];          double quant_error[3][32];
187          int quant_count[32];  
188            /* This fields stores the count of each quant usage per frame type
189             * No real role but for debugging */
190            int quant_count[3][32];
191    
192            /* Last valid quantizer used per frame type, it allows quantizer
193             * increament/decreament limitation in order to avoid big image quality
194             * "jumps" */
195          int last_quant[3];          int last_quant[3];
196    
197          double curve_comp_error;          /*----------------------------------
198          int overflow;           * Overflow control
199          int KFoverflow;           *--------------------------------*/
200          int KFoverflow_partial;  
201          int KF_idx;          /* Current overflow that has to be distributed to p/b frames */
202            double overflow;
203    
204            /* Total overflow for keyframes -- not distributed directly */
205            double KFoverflow;
206    
207            /* Amount of keyframe overflow to introduce to the global p/b frame
208             * overflow counter at each encoded frame */
209            double KFoverflow_partial;
210    
211            /* Unknown ???
212             * ToDo: description */
213          double fq_error;          double fq_error;
214    
215            int min_quant; /* internal minimal quant, prevents wrong quants from being used */
216    
217            /*----------------------------------
218             * Debug
219             *--------------------------------*/
220            double desired_total;
221            double real_total;
222  } rc_2pass2_t;  } rc_2pass2_t;
223    
224    
# Line 132  Line 240 
240  {  {
241      switch(opt) {      switch(opt) {
242      case XVID_PLG_INFO :      case XVID_PLG_INFO :
243            case XVID_PLG_FRAME :
244          return 0;          return 0;
245    
246      case XVID_PLG_CREATE :      case XVID_PLG_CREATE :
# Line 155  Line 264 
264   ****************************************************************************/   ****************************************************************************/
265    
266  /* First a few local helping function prototypes */  /* First a few local helping function prototypes */
267  static  int det_stats_length(rc_2pass2_t * rc, char * filename);  static  int statsfile_count_frames(rc_2pass2_t * rc, char * filename);
268  static  int load_stats(rc_2pass2_t *rc, char * filename);  static  int statsfile_load(rc_2pass2_t *rc, char * filename);
269  static void zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create);  static void zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create);
270  static void internal_scale(rc_2pass2_t *rc);  static void first_pass_stats_prepare_data(rc_2pass2_t * rc);
271  static void pre_process0(rc_2pass2_t * rc);  static void first_pass_scale_curve_internal(rc_2pass2_t *rc);
272  static void pre_process1(rc_2pass2_t * rc);  static void scaled_curve_apply_advanced_parameters(rc_2pass2_t * rc);
273    static  int check_curve_for_vbv_compliancy(rc_2pass2_t * rc, const float fps);
274    static  int scale_curve_for_vbv_compliancy(rc_2pass2_t * rc, const float fps);
275    #if 0
276    static void stats_print(rc_2pass2_t * rc);
277    #endif
278    
279  /*----------------------------------------------------------------------------  /*----------------------------------------------------------------------------
280   *--------------------------------------------------------------------------*/   *--------------------------------------------------------------------------*/
# Line 176  Line 290 
290      if (rc == NULL)      if (rc == NULL)
291          return XVID_ERR_MEMORY;          return XVID_ERR_MEMORY;
292    
293      rc->param = *param;          /* v1.0.x */
294            rc->param.version = param->version;
295            rc->param.bitrate = param->bitrate;
296            rc->param.filename = param->filename;
297            rc->param.keyframe_boost = param->keyframe_boost;
298            rc->param.curve_compression_high = param->curve_compression_high;
299            rc->param.curve_compression_low = param->curve_compression_low;
300            rc->param.overflow_control_strength = param->overflow_control_strength;
301            rc->param.max_overflow_improvement = param->max_overflow_improvement;
302            rc->param.max_overflow_degradation = param->max_overflow_degradation;
303            rc->param.kfreduction = param->kfreduction;
304            rc->param.kfthreshold = param->kfthreshold;
305            rc->param.container_frame_overhead = param->container_frame_overhead;
306    
307            if (XVID_VERSION_MINOR(param->version) >= 1) {
308                    rc->param.vbv_size = param->vbv_size;
309                    rc->param.vbv_initial = param->vbv_initial;
310                    rc->param.vbv_maxrate = param->vbv_maxrate;
311                    rc->param.vbv_peakrate = param->vbv_peakrate;
312            }else{
313                    rc->param.vbv_size =
314                    rc->param.vbv_initial =
315                    rc->param.vbv_maxrate =
316                    rc->param.vbv_peakrate = 0;
317            }
318    
319          /*          /* Initialize all defaults */
          * Initialize all defaults  
          */  
320  #define _INIT(a, b) if((a) <= 0) (a) = (b)  #define _INIT(a, b) if((a) <= 0) (a) = (b)
321      /* Let's set our defaults if needed */      /* Let's set our defaults if needed */
322          _INIT(rc->param.keyframe_boost, DEFAULT_KEYFRAME_BOOST);          _INIT(rc->param.keyframe_boost, DEFAULT_KEYFRAME_BOOST);
323          _INIT(rc->param.payback_method, DEFAULT_PAYBACK_METHOD);          _INIT(rc->param.overflow_control_strength, DEFAULT_OVERFLOW_CONTROL_STRENGTH);
         _INIT(rc->param.bitrate_payback_delay, DEFAULT_BITRATE_PAYBACK_DELAY);  
324      _INIT(rc->param.curve_compression_high, DEFAULT_CURVE_COMPRESSION_HIGH);      _INIT(rc->param.curve_compression_high, DEFAULT_CURVE_COMPRESSION_HIGH);
325      _INIT(rc->param.curve_compression_low, DEFAULT_CURVE_COMPRESSION_LOW);      _INIT(rc->param.curve_compression_low, DEFAULT_CURVE_COMPRESSION_LOW);
326      _INIT(rc->param.max_overflow_improvement, DEFAULT_MAX_OVERFLOW_IMPROVEMENT);      _INIT(rc->param.max_overflow_improvement, DEFAULT_MAX_OVERFLOW_IMPROVEMENT);
327      _INIT(rc->param.max_overflow_degradation,  DEFAULT_MAX_OVERFLOW_DEGRADATION);      _INIT(rc->param.max_overflow_degradation,  DEFAULT_MAX_OVERFLOW_DEGRADATION);
328    
329      /* Keyframe settings */      /* Keyframe settings */
         _INIT(rc->param.kftreshold, DEFAULT_KFTRESHOLD);  
330      _INIT(rc->param.kfreduction, DEFAULT_KFREDUCTION);      _INIT(rc->param.kfreduction, DEFAULT_KFREDUCTION);
331      _INIT(rc->param.min_key_interval, DEFAULT_MIN_KEY_INTERVAL);          _INIT(rc->param.kfthreshold, DEFAULT_KFTHRESHOLD);
332  #undef _INIT  #undef _INIT
333    
334          /* Initialize some stuff to zero */          /* Initialize some stuff to zero */
         for(i=0; i<32; i++) rc->quant_count[i] = 0;  
   
335          for(i=0; i<3; i++) {          for(i=0; i<3; i++) {
336                  int j;                  int j;
337                  for (j=0; j<32; j++)                  for (j=0; j<32; j++) {
338                          rc->quant_error[i][j] = 0;                          rc->quant_error[i][j] = 0;
339                            rc->quant_count[i][j] = 0;
340                    }
341          }          }
342    
343          for (i=0; i<3; i++)          for (i=0; i<3; i++) rc->last_quant[i] = 0;
                 rc->last_quant[i] = 0;  
344    
345          rc->fq_error = 0;          rc->fq_error = 0;
346            rc->min_quant = 1;
347    
348          /* Count frames in the stats file */          /* Count frames (and intra frames) in the stats file, store the result into
349          if (!det_stats_length(rc, param->filename)) {           * the rc structure */
350                  DPRINTF(XVID_DEBUG_RC,"ERROR: fopen %s failed\n", param->filename);          if (statsfile_count_frames(rc, param->filename) == -1) {
351                    DPRINTF(XVID_DEBUG_RC,"[xvid rc] -- ERROR: fopen %s failed\n", param->filename);
352                  free(rc);                  free(rc);
353                  return XVID_ERR_FAIL;                  return(XVID_ERR_FAIL);
354          }          }
355    
356      /* Allocate the stats' memory */      /* Allocate the stats' memory */
357          if ((rc->stats = malloc(rc->num_frames * sizeof(stat_t))) == NULL) {          if ((rc->stats = malloc(rc->num_frames * sizeof(twopass_stat_t))) == NULL) {
358          free(rc);          free(rc);
359          return XVID_ERR_MEMORY;                  return(XVID_ERR_MEMORY);
360      }      }
361    
362      /*          /* Allocate keyframes location's memory
363           * Allocate keyframes location's memory           * PS: see comment in pre_process0 for the +1 location requirement */
          * PS: see comment in pre_process0 for the +1 location requirement  
          */  
364          rc->keyframe_locations = malloc((rc->num_keyframes + 1) * sizeof(int));          rc->keyframe_locations = malloc((rc->num_keyframes + 1) * sizeof(int));
365          if (rc->keyframe_locations == NULL) {          if (rc->keyframe_locations == NULL) {
366                  free(rc->stats);                  free(rc->stats);
367                  free(rc);                  free(rc);
368                  return XVID_ERR_MEMORY;                  return(XVID_ERR_MEMORY);
369          }          }
370    
371          if (!load_stats(rc, param->filename)) {          /* Load the first pass stats */
372                  DPRINTF(XVID_DEBUG_RC,"ERROR: fopen %s failed\n", param->filename);          if (statsfile_load(rc, param->filename) == -1) {
373                    DPRINTF(XVID_DEBUG_RC,"[xvid rc] -- ERROR: fopen %s failed\n", param->filename);
374                  free(rc->keyframe_locations);                  free(rc->keyframe_locations);
375                  free(rc->stats);                  free(rc->stats);
376                  free(rc);                  free(rc);
# Line 244  Line 378 
378          }          }
379    
380          /* Compute the target filesize */          /* Compute the target filesize */
381          if (rc->num_frames  < create->fbase/create->fincr) {          if (rc->param.bitrate<0) {
382                    /* if negative, bitrate equals the target (in kbytes) */
383                    rc->target = ((uint64_t)(-rc->param.bitrate)) * 1024;
384            } else if (rc->num_frames  < create->fbase/create->fincr) {
385                  /* Source sequence is less than 1s long, we do as if it was 1s long */                  /* Source sequence is less than 1s long, we do as if it was 1s long */
386                  rc->target = rc->param.bitrate / 8;                  rc->target = rc->param.bitrate / 8;
387          } else {          } else {
# Line 255  Line 392 
392                          ((uint64_t)create->fbase * 8);                          ((uint64_t)create->fbase * 8);
393          }          }
394    
395          DPRINTF(XVID_DEBUG_RC, "Frame rate: %d/%d (%ffps)\n",          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Frame rate: %d/%d (%ffps)\n",
396                          create->fbase, create->fincr,                          create->fbase, create->fincr,
397                          (double)create->fbase/(double)create->fincr);                          (double)create->fbase/(double)create->fincr);
398          DPRINTF(XVID_DEBUG_RC, "Number of frames: %d\n", rc->num_frames);          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Number of frames: %d\n", rc->num_frames);
399          DPRINTF(XVID_DEBUG_RC, "Target bitrate: %ld\n", rc->param.bitrate);          if(rc->param.bitrate>=0)
400          DPRINTF(XVID_DEBUG_RC, "Target filesize: %lld\n", rc->target);                  DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Target bitrate: %ld\n", rc->param.bitrate);
401            DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Target filesize: %lld\n", rc->target);
402    
403          /* Compensate the average frame overhead caused by the container */          /* Compensate the average frame overhead caused by the container */
404          rc->target -= rc->num_frames*rc->param.container_frame_overhead;          rc->target -= rc->num_frames*rc->param.container_frame_overhead;
405          DPRINTF(XVID_DEBUG_RC, "Container Frame overhead: %d\n", rc->param.container_frame_overhead);          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Container Frame overhead: %d\n", rc->param.container_frame_overhead);
406          DPRINTF(XVID_DEBUG_RC, "Target filesize (after container compensation): %lld\n", rc->target);          if(rc->param.container_frame_overhead)
407                    DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- New target filesize after container compensation: %lld\n", rc->target);
408    
409          /*          /* When bitrate is not given it means it has been scaled by an external
410           * First data pre processing:           * application */
411            if (rc->param.bitrate) {
412                    /* Apply zone settings
413                     * - set rc->tot_quant which represents the total num of bytes spent in
414                     *   fixed quant zones
415                     * - set rc->tot_weighted which represents the total amount of bytes
416                     *   spent in normal or weighted zones in first pass (normal zones can
417                     *   be considered weight=1)
418                     * - set rc->tot_quant_invariant which represents the total num of bytes
419                     *   spent in fixed quant zones for headers */
420                    zone_process(rc, create);
421            } else {
422                    /* External scaling -- zones are ignored */
423                    for (i=0;i<rc->num_frames;i++) {
424                            rc->stats[i].zone_mode = XVID_ZONE_WEIGHT;
425                            rc->stats[i].weight = 1.0;
426                    }
427                    rc->tot_quant = 0;
428            }
429    
430            /* Gathers some information about first pass stats:
431           *  - finds the minimum frame length for each frame type during 1st pass.           *  - finds the minimum frame length for each frame type during 1st pass.
432           *     rc->min_size[]           *     rc->min_size[]
433           *  - determines the maximum frame length observed (no frame type distinction).           *  - determines the maximum frame length observed (no frame type distinction).
# Line 276  Line 435 
435           *  - count how many times each frame type has been used.           *  - count how many times each frame type has been used.
436           *     rc->count[]           *     rc->count[]
437           *  - total bytes used per frame type           *  - total bytes used per frame type
438           *     rc->total[]           *     rc->tot_length[]
439             *  - total bytes considered invariant between the 2 passes
440           *  - store keyframe location           *  - store keyframe location
441           *     rc->keyframe_locations[]           *     rc->keyframe_locations[]
442           */           */
443          pre_process0(rc);          first_pass_stats_prepare_data(rc);
444    
445          /*          /* If we have a user bitrate, it means it's an internal curve scaling */
          * When bitrate is not given it means it has been scaled by an external  
          * application  
          */  
446          if (rc->param.bitrate) {          if (rc->param.bitrate) {
447                  /* Apply zone settings */                  /* Perform internal curve scaling */
448                  zone_process(rc, create);                  first_pass_scale_curve_internal(rc);
                 /* Perform curve scaling */  
                 internal_scale(rc);  
         } else {  
                 /* External scaling -- zones are ignored */  
                 for (i=0;i<rc->num_frames;i++) {  
                         rc->stats[i].zone_mode = XVID_ZONE_WEIGHT;  
                         rc->stats[i].weight = 1.0;  
449                  }                  }
450                  rc->avg_weight = 1.0;  
451                  rc->tot_quant = 0;          /* Apply advanced curve options, and compute some parameters in order to
452             * shape the curve in the BEFORE/AFTER pair of functions */
453            scaled_curve_apply_advanced_parameters(rc);
454    
455    /* Check curve for VBV compliancy and rescale if necessary */
456    
457    #ifdef VBV_FORCE
458      if (rc->param.vbv_size==0)
459      {
460        rc->param.vbv_size      =  3145728;
461        rc->param.vbv_initial   =  2359296;
462        rc->param.vbv_maxrate  =  4000000;
463        rc->param.vbv_peakrate = 10000000;
464          }          }
465    #endif
466    
467          pre_process1(rc);    if (rc->param.vbv_size>0)    /* vbv_size==0 switches VBV check off */
468      {
469        const double fps = (double)create->fbase/(double)create->fincr;
470        int status = check_curve_for_vbv_compliancy(rc, fps);
471    #ifdef VBV_DEBUG
472        if (status)
473          fprintf(stderr,"underflow detected\n Scaling Curve for compliancy... ");
474    #endif
475    
476            status = scale_curve_for_vbv_compliancy(rc, fps);
477    
478    #ifdef VBV_DEBUG
479          if (status==0)
480            fprintf(stderr,"done.\n");
481          else
482            fprintf(stderr,"impossible.\n");
483    #endif
484      }
485          *handle = rc;          *handle = rc;
486          return(0);          return(0);
487  }  }
# Line 313  Line 492 
492  static int  static int
493  rc_2pass2_destroy(rc_2pass2_t * rc, xvid_plg_destroy_t * destroy)  rc_2pass2_destroy(rc_2pass2_t * rc, xvid_plg_destroy_t * destroy)
494  {  {
495            DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- target_total:%lld desired_total:%.2f (%.2f%%) actual_total:%.2f (%.2f%%)\n",
496                            rc->target,
497                            rc->desired_total,
498                            100*rc->desired_total/(double)rc->target,
499                            rc->real_total,
500                            100*rc->real_total/(double)rc->target);
501    
502      free(rc->keyframe_locations);      free(rc->keyframe_locations);
503      free(rc->stats);      free(rc->stats);
504          free(rc);          free(rc);
# Line 325  Line 511 
511  static int  static int
512  rc_2pass2_before(rc_2pass2_t * rc, xvid_plg_data_t * data)  rc_2pass2_before(rc_2pass2_t * rc, xvid_plg_data_t * data)
513  {  {
514          stat_t * s = &rc->stats[data->frame_num];          twopass_stat_t * s = &rc->stats[data->frame_num];
         int overflow;  
         int desired;  
515          double dbytes;          double dbytes;
         double curve_temp;  
516          double scaled_quant;          double scaled_quant;
517            double overflow;
518          int capped_to_max_framesize = 0;          int capped_to_max_framesize = 0;
519    
520          /*          /* This function is quite long but easy to understand. In order to simplify
521           * This function is quite long but easy to understand. In order to simplify           * the code path (a bit), we treat 3 cases that can return immediatly. */
          * the code path (a bit), we treat 3 cases that can return immediatly.  
          */  
522    
523          /* First case: Another plugin has already set a quantizer */          /* First case: Another plugin has already set a quantizer */
524      if (data->quant > 0)      if (data->quant > 0)
525                  return(0);                  return(0);
526    
527          /* Second case: We are in a Quant zone */          /* Second case: insufficent stats data
528             * We can't guess much what we should do, let core decide all alone */
529            if (data->frame_num >= rc->num_frames) {
530                    DPRINTF(XVID_DEBUG_RC,"[xvid rc] -- stats file too short (now processing frame %d)",
531                            data->frame_num);
532                    return(0);
533            }
534    
535            /* Third case: We are in a Quant zone
536             * Quant zones must just ensure we use the same settings as first pass
537             * So set the quantizer and the type */
538          if (s->zone_mode == XVID_ZONE_QUANT) {          if (s->zone_mode == XVID_ZONE_QUANT) {
539                    /* Quant stuff */
540                  rc->fq_error += s->weight;                  rc->fq_error += s->weight;
541                  data->quant = (int)rc->fq_error;                  data->quant = (int)rc->fq_error;
542                  rc->fq_error -= data->quant;                  rc->fq_error -= data->quant;
543    
544                    /* The type stuff */
545                    data->type = s->type;
546    
547                    /* The only required data for AFTER step is this one for the overflow
548                     * control */
549                  s->desired_length = s->length;                  s->desired_length = s->length;
550    
551                  return(0);                  return(0);
552          }          }
553    
         /* Third case: insufficent stats data */  
         if (data->frame_num >= rc->num_frames)  
                 return 0;  
   
         /*  
          * The last case is the one every normal minded developer should fear to  
          * maintain in a project :-)  
          */  
554    
555          /* XXX: why by 8 */          /*************************************************************************/
556          overflow = rc->overflow / 8;          /*************************************************************************/
557            /*************************************************************************/
558    
559          /*          /*-------------------------------------------------------------------------
560           * The rc->overflow field represents the overflow in current scene (between two           * Frame bit allocation first part
561           * IFrames) so we must not forget to reset it if we are entering a new scene           *
562           */           * First steps apply user settings, just like it is done in the theoritical
563          if (s->type == XVID_TYPE_IVOP)           * scaled_curve_apply_advanced_parameters
564                  overflow = 0;           *-----------------------------------------------------------------------*/
565    
566          desired = s->scaled_length;          /* Set desired to what we are wanting to obtain for this frame */
567            dbytes = (double)s->scaled_length;
568    
569          dbytes = desired;          /* IFrame user settings*/
570          if (s->type == XVID_TYPE_IVOP)          if (s->type == XVID_TYPE_IVOP) {
571                  dbytes += desired * rc->param.keyframe_boost / 100;                  /* Keyframe boosting -- All keyframes benefit from it */
572          dbytes /= rc->movie_curve;                  dbytes += dbytes*rc->param.keyframe_boost / 100;
   
         /*  
          * We are now entering in the hard part of the algo, it was first designed  
          * to work with i/pframes only streams, so the way it computes things is  
          * adapted to pframes only. However we can use it if we just take care to  
          * scale the bframes sizes to pframes sizes using the ratio avg_p/avg_p and  
          * then before really using values depending on frame sizes, scaling the  
          * value again with the inverse ratio  
          */  
         if (s->type == XVID_TYPE_BVOP)  
                 dbytes *= rc->avg_length[XVID_TYPE_PVOP-1] / rc->avg_length[XVID_TYPE_BVOP-1];  
573    
574          /*  #if 0 /* ToDo: decide how to apply kfthresholding */
575           * Apply user's choosen Payback method. Payback helps bitrate to follow the  #endif
          * scaled curve "paying back" past errors in curve previsions.  
          */  
         if (rc->param.payback_method == XVID_PAYBACK_BIAS) {  
                 desired = (int)(rc->curve_comp_error / rc->param.bitrate_payback_delay);  
576          } else {          } else {
                 desired = (int)(rc->curve_comp_error * dbytes /  
                                                 rc->avg_length[XVID_TYPE_PVOP-1] / rc->param.bitrate_payback_delay);  
577    
578                  if (labs(desired) > fabs(rc->curve_comp_error)) {                  /* P/S/B frames must reserve some bits for iframe boosting */
579                          desired = (int)rc->curve_comp_error;                  dbytes *= rc->pb_iboost_tax_ratio;
580    
581                    /* Apply assymetric curve compression */
582                    if (rc->param.curve_compression_high || rc->param.curve_compression_low) {
583                            double assymetric_delta;
584    
585                            /* Compute the assymetric delta, this is computed before applying
586                             * the tax, as done in the pre_process function */
587                            if (dbytes > rc->avg_length[s->type-1])
588                                    assymetric_delta = (rc->avg_length[s->type-1] - dbytes) * rc->param.curve_compression_high / 100.0;
589                            else
590                                    assymetric_delta = (rc->avg_length[s->type-1] - dbytes) * rc->param.curve_compression_low  / 100.0;
591    
592                            /* Now we must apply the assymetric tax, else our curve compression
593                             * would not give a theoritical target size equal to what it is
594                             * expected */
595                            dbytes *= rc->assymetric_tax_ratio;
596    
597                            /* Now we can add the assymetric delta */
598                            dbytes += assymetric_delta;
599                  }                  }
600          }          }
601    
602          rc->curve_comp_error -= desired;          /* That is what we would like to have -- Don't put that chunk after
603             * overflow control, otherwise, overflow is counted twice and you obtain
604             * half sized bitrate sequences */
605            s->desired_length  = (int)dbytes;
606            rc->desired_total += dbytes;
607    
608          /* XXX: warning */          /*------------------------------------------------------------------------
609          curve_temp = 0;           * Frame bit allocation: overflow control part.
610             *
611             * Unlike the theoritical scaled_curve_apply_advanced_parameters, here
612             * it's real encoding and we need to make sure we don't go so far from
613             * what is our ideal scaled curve.
614             *-----------------------------------------------------------------------*/
615    
616            /* Compute the overflow we should compensate */
617            if (s->type != XVID_TYPE_IVOP || rc->overflow > 0) {
618                    double frametype_factor;
619                    double framesize_factor;
620    
621          if ((rc->param.curve_compression_high + rc->param.curve_compression_low) &&     s->type != XVID_TYPE_IVOP) {                  /* Take only the desired part of overflow */
622                    overflow = rc->overflow;
623    
624                  curve_temp = rc->curve_comp_scale;                  /* Factor that will take care to decrease the overflow applied
625                  if (dbytes > rc->avg_length[XVID_TYPE_PVOP-1]) {                   * according to the importance of this frame type in term of
626                          curve_temp *= ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_high / 100.0);                   * overall size */
627                  } else {                  frametype_factor  = rc->count[XVID_TYPE_IVOP-1]*rc->avg_length[XVID_TYPE_IVOP-1];
628                          curve_temp *= ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_low / 100.0);                  frametype_factor += rc->count[XVID_TYPE_PVOP-1]*rc->avg_length[XVID_TYPE_PVOP-1];
629                  }                  frametype_factor += rc->count[XVID_TYPE_BVOP-1]*rc->avg_length[XVID_TYPE_BVOP-1];
630                    frametype_factor /= rc->count[s->type-1]*rc->avg_length[s->type-1];
631                    frametype_factor  = 1/frametype_factor;
632    
633                    /* Factor that will take care not to compensate too much for this frame
634                     * size */
635                    framesize_factor  = dbytes;
636                    framesize_factor /= rc->avg_length[s->type-1];
637    
638                  /*                  /* Treat only the overflow part concerned by this frame type and size */
639                   * End of code path for curve_temp, as told earlier, we are now                  overflow *= frametype_factor;
640                   * obliged to scale the value to a bframe one using the inverse  #if 0
641                   * ratio applied earlier                  /* Leave this one alone, as it impacts badly on quality */
642                   */                  overflow *= framesize_factor;
643                  if (s->type == XVID_TYPE_BVOP)  #endif
                         curve_temp *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];  
644    
645                  desired += (int)curve_temp;                  /* Apply the overflow strength imposed by the user */
646                  rc->curve_comp_error += curve_temp - (int)curve_temp;                  overflow *= (rc->param.overflow_control_strength/100.0f);
647          } else {          } else {
648                  /*                  /* no negative overflow applied in IFrames because:
649                   * End of code path for dbytes, as told earlier, we are now                   *  - their role is important as they're references for P/BFrames.
650                   * obliged to scale the value to a bframe one using the inverse                   *  - there aren't much in typical sequences, so if an IFrame overflows too
651                   * ratio applied earlier                   *    much, this overflow may impact the next IFrame too much and generate
652                   */                   *    a sequence of poor quality frames */
653                  if (s->type == XVID_TYPE_BVOP)                  overflow = 0;
                         dbytes *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];  
   
                 desired += (int)dbytes;  
                 rc->curve_comp_error += dbytes - (int)dbytes;  
654          }          }
655    
656            /* Make sure we are not trying to compensate more overflow than we even have */
657            if (fabs(overflow) > fabs(rc->overflow))
658                    overflow = rc->overflow;
659    
660          /*          /* Make sure the overflow doesn't make the frame size to get out of the range
661           * We can't do bigger frames than first pass, this would be stupid as first           * [-max_degradation..+max_improvment] */
662           * pass is quant=2 and that reaching quant=1 is not worth it. We would lose          if (overflow > dbytes*rc->param.max_overflow_improvement / 100) {
663           * many bytes and we would not not gain much quality.                  if(overflow <= dbytes)
664           */                          dbytes += dbytes * rc->param.max_overflow_improvement / 100;
665          if (desired > s->length) {                  else
666                  rc->curve_comp_error += desired - s->length;                          dbytes += overflow * rc->param.max_overflow_improvement / 100;
667                  desired = s->length;          } else if (overflow < - dbytes * rc->param.max_overflow_degradation / 100) {
668                    dbytes -= dbytes * rc->param.max_overflow_degradation / 100;
669          } else {          } else {
670                  if (desired < rc->min_length[s->type-1]) {                  dbytes += overflow;
                         if (s->type == XVID_TYPE_IVOP){  
                                 rc->curve_comp_error -= rc->min_length[XVID_TYPE_IVOP-1] - desired;  
                         }  
                         desired = rc->min_length[s->type-1];  
                 }  
671          }          }
672    
673          s->desired_length = desired;          /*-------------------------------------------------------------------------
674             * Frame bit allocation last part:
675             *
676          /*           * Cap frame length so we don't reach neither bigger frame sizes than first
677           * if this keyframe is too close to the next, reduce it's byte allotment           * pass nor smaller than the allowed minimum.
678           * XXX: why do we do this after setting the desired length ?           *-----------------------------------------------------------------------*/
679           */  
680    #ifdef PASS_SMALLER
681          if (s->type == XVID_TYPE_IVOP) {          if (dbytes > s->length) {
682                  int KFdistance = rc->keyframe_locations[rc->KF_idx] - rc->keyframe_locations[rc->KF_idx - 1];                  dbytes = s->length;
683            }
684                  if (KFdistance < rc->param.kftreshold) {  #endif
685    
686                          KFdistance -= rc->param.min_key_interval;          /* Prevent stupid desired sizes under logical values */
687            if (dbytes < rc->min_length[s->type-1]) {
688                    dbytes = rc->min_length[s->type-1];
689            }
690    
691                          if (KFdistance >= 0) {          /*------------------------------------------------------------------------
692                                  int KF_min_size;           * Desired frame length <-> quantizer mapping
693             *-----------------------------------------------------------------------*/
694    
695                                  KF_min_size = desired * (100 - rc->param.kfreduction) / 100;  #ifdef BQUANT_PRESCALE
696                                  if (KF_min_size < 1)          /* For bframes we prescale the quantizer to avoid too high quant scaling */
697                                          KF_min_size = 1;          if(s->type == XVID_TYPE_BVOP) {
698    
699                                  desired = KF_min_size + (desired - KF_min_size) * KFdistance /                  twopass_stat_t *b_ref = s;
                                         (rc->param.kftreshold - rc->param.min_key_interval);  
700    
701                                  if (desired < 1)                  /* Find the reference frame */
702                                          desired = 1;                  while(b_ref != &rc->stats[0] && b_ref->type == XVID_TYPE_BVOP)
703                          }                          b_ref--;
704                  }  
705                    /* Compute the original quant */
706                    s->quant  = 2*(100*s->quant - data->bquant_offset);
707                    s->quant += data->bquant_ratio - 1; /* to avoid rounding issues */
708                    s->quant  = s->quant/data->bquant_ratio - b_ref->quant;
709          }          }
710    #endif
711    
712          overflow = (int)((double)overflow * desired / rc->avg_length[XVID_TYPE_PVOP-1]);          /* Don't laugh at this very 'simple' quant<->size relationship, it
713             * proves to be acurate enough for our algorithm */
714            scaled_quant = (double)s->quant*(double)s->length/(double)dbytes;
715    
716    #ifdef COMPENSATE_FORMULA
717            /* We know xvidcore will apply the bframe formula again, so we compensate
718             * it right now to make sure we would not apply it twice */
719            if(s->type == XVID_TYPE_BVOP) {
720    
721          /* Reign in overflow with huge frames */                  twopass_stat_t *b_ref = s;
         if (labs(overflow) > labs(rc->overflow))  
                 overflow = rc->overflow;  
722    
723          /* Make sure overflow doesn't run away */                  /* Find the reference frame */
724          if (overflow > desired * rc->param.max_overflow_improvement / 100) {                  while(b_ref != &rc->stats[0] && b_ref->type == XVID_TYPE_BVOP)
725                  desired += (overflow <= desired) ? desired * rc->param.max_overflow_improvement / 100 :                          b_ref--;
726                          overflow * rc->param.max_overflow_improvement / 100;  
727          } else if (overflow < desired * rc->param.max_overflow_degradation / -100){                  /* Compute the quant it would be if the core did not apply the bframe
728                  desired += desired * rc->param.max_overflow_degradation / -100;                   * formula */
729          } else {                  scaled_quant  = 100*scaled_quant - data->bquant_offset;
730                  desired += overflow;                  scaled_quant += data->bquant_ratio - 1; /* to avoid rouding issues */
731          }                  scaled_quant /= data->bquant_ratio;
   
         /* Make sure we are not higher than desired frame size */  
         if (desired > rc->max_length) {  
                 capped_to_max_framesize = 1;  
                 desired = rc->max_length;  
                 DPRINTF(XVID_DEBUG_RC,"[%i] Capped to maximum frame size\n",  
                                 data->frame_num);  
732          }          }
733    #endif
734    
735          /* Make sure to not scale below the minimum framesize */          /* Quantizer has been scaled using floating point operations/results, we
736          if (desired < rc->min_length[s->type-1]) {           * must cast it to integer */
                 desired = rc->min_length[s->type-1];  
                 DPRINTF(XVID_DEBUG_RC,"[%i] Capped to minimum frame size\n",  
                                 data->frame_num);  
         }  
   
         /*  
          * Don't laugh at this very 'simple' quant<->filesize relationship, it  
          * proves to be acurate enough for our algorithm  
          */  
         scaled_quant = (double)s->quant*(double)s->length/(double)desired;  
   
         /*  
          * Quantizer has been scaled using floating point operations/results, we  
          * must cast it to integer  
          */  
737          data->quant = (int)scaled_quant;          data->quant = (int)scaled_quant;
738    
739          /* Let's clip the computed quantizer, if needed */          /* Let's clip the computed quantizer, if needed */
# Line 539  Line 741 
741                  data->quant = 1;                  data->quant = 1;
742          } else if (data->quant > 31) {          } else if (data->quant > 31) {
743                  data->quant = 31;                  data->quant = 31;
744          } else if (s->type != XVID_TYPE_IVOP) {          } else {
745    
746                  /*                  /* The frame quantizer has not been clipped, this appears to be a good
                  * The frame quantizer has not been clipped, this appears to be a good  
747                   * computed quantizer, do not loose quantizer decimal part that we                   * computed quantizer, do not loose quantizer decimal part that we
748                   * accumulate for later reuse when its sum represents a complete unit.                   * accumulate for later reuse when its sum represents a complete
749                   */                   * unit. */
750                  rc->quant_error[s->type-1][data->quant] += scaled_quant - (double)data->quant;                  rc->quant_error[s->type-1][data->quant] += scaled_quant - (double)data->quant;
751    
752                  if (rc->quant_error[s->type-1][data->quant] >= 1.0) {                  if (rc->quant_error[s->type-1][data->quant] >= 1.0) {
# Line 555  Line 756 
756                          rc->quant_error[s->type-1][data->quant] += 1.0;                          rc->quant_error[s->type-1][data->quant] += 1.0;
757                          data->quant--;                          data->quant--;
758                  }                  }
   
759          }          }
760    
761          /*          /* Now we have a computed quant that is in the right quante range, with a
          * Now we have a computed quant that is in the right quante range, with a  
762           * possible +1 correction due to cumulated error. We can now safely clip           * possible +1 correction due to cumulated error. We can now safely clip
763           * the quantizer again with user's quant ranges. "Safely" means the Rate           * the quantizer again with user's quant ranges. "Safely" means the Rate
764           * Control could learn more about this quantizer, this knowledge is useful           * Control could learn more about this quantizer, this knowledge is useful
765           * for future frames even if it this quantizer won't be really used atm,           * for future frames even if it this quantizer won't be really used atm,
766           * that's why we don't perform this clipping earlier.           * that's why we don't perform this clipping earlier. */
          */  
767          if (data->quant < data->min_quant[s->type-1]) {          if (data->quant < data->min_quant[s->type-1]) {
768                  data->quant = data->min_quant[s->type-1];                  data->quant = data->min_quant[s->type-1];
769          } else if (data->quant > data->max_quant[s->type-1]) {          } else if (data->quant > data->max_quant[s->type-1]) {
770                  data->quant = data->max_quant[s->type-1];                  data->quant = data->max_quant[s->type-1];
771          }          }
772    
773          /*          if (data->quant < rc->min_quant) data->quant = rc->min_quant;
774           * To avoid big quality jumps from frame to frame, we apply a "security"  
775            /* To avoid big quality jumps from frame to frame, we apply a "security"
776           * rule that makes |last_quant - new_quant| <= 2. This rule only applies           * rule that makes |last_quant - new_quant| <= 2. This rule only applies
777           * to predicted frames (P and B)           * to predicted frames (P and B) */
          */  
778          if (s->type != XVID_TYPE_IVOP && rc->last_quant[s->type-1] && capped_to_max_framesize == 0) {          if (s->type != XVID_TYPE_IVOP && rc->last_quant[s->type-1] && capped_to_max_framesize == 0) {
779    
780                  if (data->quant > rc->last_quant[s->type-1] + 2) {                  if (data->quant > rc->last_quant[s->type-1] + 2) {
781                          data->quant = rc->last_quant[s->type-1] + 2;                          data->quant = rc->last_quant[s->type-1] + 2;
782                          DPRINTF(XVID_DEBUG_RC,                          DPRINTF(XVID_DEBUG_RC,
783                                          "[%i] p/b-frame quantizer prevented from rising too steeply\n",                                          "[xvid rc] -- frame %d p/b-frame quantizer prevented from rising too steeply\n",
784                                          data->frame_num);                                          data->frame_num);
785                  }                  }
786                  if (data->quant < rc->last_quant[s->type-1] - 2) {                  if (data->quant < rc->last_quant[s->type-1] - 2) {
787                          data->quant = rc->last_quant[s->type-1] - 2;                          data->quant = rc->last_quant[s->type-1] - 2;
788                          DPRINTF(XVID_DEBUG_RC,                          DPRINTF(XVID_DEBUG_RC,
789                                          "[%i] p/b-frame quantizer prevented from falling too steeply\n",                                          "[xvid rc] -- frame:%d p/b-frame quantizer prevented from falling too steeply\n",
790                                          data->frame_num);                                          data->frame_num);
791                  }                  }
792          }          }
793    
794          /*          /* We don't want to pollute the RC histerisis when our computed quant has
795           * We don't want to pollute the RC history results when our computed quant           * been computed from a capped frame size */
          * has been computed from a capped frame size  
          */  
796          if (capped_to_max_framesize == 0)          if (capped_to_max_framesize == 0)
797                  rc->last_quant[s->type-1] = data->quant;                  rc->last_quant[s->type-1] = data->quant;
798    
799            /* Don't forget to force 1st pass frame type ;-) */
800            data->type = s->type;
801    
802          return 0;          return 0;
803  }  }
804    
# Line 610  Line 809 
809  rc_2pass2_after(rc_2pass2_t * rc, xvid_plg_data_t * data)  rc_2pass2_after(rc_2pass2_t * rc, xvid_plg_data_t * data)
810  {  {
811          const char frame_type[4] = { 'i', 'p', 'b', 's'};          const char frame_type[4] = { 'i', 'p', 'b', 's'};
812          stat_t * s = &rc->stats[data->frame_num];          twopass_stat_t * s = &rc->stats[data->frame_num];
813    
814          /* Insufficent stats data */          /* Insufficent stats data */
815      if (data->frame_num >= rc->num_frames)      if (data->frame_num >= rc->num_frames)
816          return 0;          return 0;
817    
818      rc->quant_count[data->quant]++;          /* Update the quantizer counter */
819            rc->quant_count[s->type-1][data->quant]++;
820    
821            /* Update the frame type overflow */
822      if (data->type == XVID_TYPE_IVOP) {      if (data->type == XVID_TYPE_IVOP) {
823          int kfdiff = (rc->keyframe_locations[rc->KF_idx] -      rc->keyframe_locations[rc->KF_idx - 1]);                  int kfdiff = 0;
824    
825                    if(rc->KF_idx != rc->num_frames -1) {
826                            kfdiff  = rc->keyframe_locations[rc->KF_idx+1];
827                            kfdiff -= rc->keyframe_locations[rc->KF_idx];
828                    }
829    
830                    /* Flush Keyframe overflow accumulator */
831          rc->overflow += rc->KFoverflow;          rc->overflow += rc->KFoverflow;
832    
833                    /* Store the frame overflow to the keyframe accumulator */
834          rc->KFoverflow = s->desired_length - data->length;          rc->KFoverflow = s->desired_length - data->length;
835    
836          if (kfdiff > 1) {  // non-consecutive keyframes                  if (kfdiff > 1) {
837                            /* Non-consecutive keyframes case:
838                             * We can then divide this total keyframe overflow into equal parts
839                             * that we will distribute into regular overflow at each frame
840                             * between the sequence bounded by two IFrames */
841              rc->KFoverflow_partial = rc->KFoverflow / (kfdiff - 1);              rc->KFoverflow_partial = rc->KFoverflow / (kfdiff - 1);
842          }else{ // consecutive keyframes                  } else {
843                            /* Consecutive keyframes case:
844                             * Flush immediatly the keyframe overflow and reset keyframe
845                             * overflow */
846                          rc->overflow += rc->KFoverflow;                          rc->overflow += rc->KFoverflow;
847                          rc->KFoverflow = 0;                          rc->KFoverflow = 0;
848                          rc->KFoverflow_partial = 0;                          rc->KFoverflow_partial = 0;
849          }          }
850          rc->KF_idx++;          rc->KF_idx++;
851      } else {      } else {
852          // distribute part of the keyframe overflow                  /* Accumulate the frame overflow */
853          rc->overflow += s->desired_length - data->length + rc->KFoverflow_partial;                  rc->overflow += s->desired_length - data->length;
854    
855                    /* Distribute part of the keyframe overflow */
856                    rc->overflow += rc->KFoverflow_partial;
857    
858                    /* Don't forget to substract that same amount from the total keyframe
859                     * overflow */
860          rc->KFoverflow -= rc->KFoverflow_partial;          rc->KFoverflow -= rc->KFoverflow_partial;
861      }      }
862    
863          DPRINTF(XVID_DEBUG_RC, "[%i] type:%c quant:%i stats1:%i scaled:%i actual:%i desired:%d overflow:%i\n",          rc->overflow += (s->error = s->desired_length - data->length);
864            rc->real_total += data->length;
865    
866            DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- frame:%d type:%c quant:%d stats:%d scaled:%d desired:%d actual:%d error:%d overflow:%.2f\n",
867                          data->frame_num,                          data->frame_num,
868                          frame_type[data->type-1],                          frame_type[data->type-1],
869                          data->quant,                          data->quant,
870                          s->length,                          s->length,
871                          s->scaled_length,                          s->scaled_length,
                         data->length,  
872                          s->desired_length,                          s->desired_length,
873                            s->desired_length - s->error,
874                            -s->error,
875                          rc->overflow);                          rc->overflow);
876    
877      return(0);      return(0);
# Line 655  Line 881 
881   * Helper functions definition   * Helper functions definition
882   ****************************************************************************/   ****************************************************************************/
883    
884    /* Default buffer size for reading lines */
885  #define BUF_SZ   1024  #define BUF_SZ   1024
 #define MAX_COLS 5  
886    
887  /* open stats file, and count num frames */  /* Helper functions for reading/parsing the stats file */
888    static char *skipspaces(char *string);
889    static int iscomment(char *string);
890    static char *readline(FILE *f);
891    
892    /* This function counts the number of frame entries in the stats file
893     * It also counts the number of I Frames */
894  static int  static int
895  det_stats_length(rc_2pass2_t * rc, char * filename)  statsfile_count_frames(rc_2pass2_t * rc, char * filename)
896  {  {
897      FILE * f;      FILE * f;
898      int n, ignore;          char *line;
899      char type;          int lines;
900    
901      rc->num_frames = 0;      rc->num_frames = 0;
902      rc->num_keyframes = 0;      rc->num_keyframes = 0;
903    
904      if ((f = fopen(filename, "rt")) == NULL)          if ((f = fopen(filename, "rb")) == NULL)
905          return 0;                  return(-1);
906    
907      while((n = fscanf(f, "%c %d %d %d %d %d %d\n",          lines = 0;
908          &type, &ignore, &ignore, &ignore, &ignore, &ignore, &ignore)) != EOF) {          while ((line = readline(f)) != NULL) {
909          if (type == 'i') {  
910              rc->num_frames++;                  char *ptr;
911                    char type;
912                    int fields;
913    
914                    lines++;
915    
916                    /* We skip spaces */
917                    ptr = skipspaces(line);
918    
919                    /* Skip coment lines or empty lines */
920                    if(iscomment(ptr) || *ptr == '\0') {
921                            free(line);
922                            continue;
923                    }
924    
925                    /* Read the stat line from buffer */
926                    fields = sscanf(ptr, "%c", &type);
927    
928                    /* Valid stats files have at least 7 fields */
929                    if (fields == 1) {
930                            switch(type) {
931                            case 'i':
932                            case 'I':
933              rc->num_keyframes++;              rc->num_keyframes++;
934          }else if (type == 'p' || type == 'b' || type == 's') {                          case 'p':
935                            case 'P':
936                            case 'b':
937                            case 'B':
938                            case 's':
939                            case 'S':
940              rc->num_frames++;              rc->num_frames++;
941                                    break;
942                            default:
943                                    DPRINTF(XVID_DEBUG_RC,
944                                                    "[xvid rc] -- WARNING: L%d unknown frame type used (%c).\n",
945                                                    lines, type);
946          }          }
947                    } else {
948                                    DPRINTF(XVID_DEBUG_RC,
949                                                    "[xvid rc] -- WARNING: L%d misses some stat fields (%d).\n",
950                                                    lines, 7-fields);
951                    }
952    
953                    /* Free the line buffer */
954                    free(line);
955      }      }
956    
957            /* We are done with the file */
958      fclose(f);      fclose(f);
959    
960      return 1;          return(0);
961  }  }
962    
963  /* open stats file(s) and read into rc->stats array */  /* open stats file(s) and read into rc->stats array */
   
964  static int  static int
965  load_stats(rc_2pass2_t *rc, char * filename)  statsfile_load(rc_2pass2_t *rc, char * filename)
966  {  {
967      FILE * f;      FILE * f;
968      int i, not_scaled;          int processed_entries;
969    
970            /* Opens the file */
971            if ((f = fopen(filename, "rb"))==NULL)
972                    return(-1);
973    
974      if ((f = fopen(filename, "rt"))==NULL)          processed_entries = 0;
975          return 0;          while(processed_entries < rc->num_frames) {
   
     i = 0;  
         not_scaled = 0;  
     while(i < rc->num_frames) {  
         stat_t * s = &rc->stats[i];  
         int n;  
976          char type;          char type;
977                    int fields;
978                    twopass_stat_t * s = &rc->stats[processed_entries];
979                    char *line, *ptr;
980    
981                    /* Read the line from the file */
982                    if((line = readline(f)) == NULL)
983                            break;
984    
985                    /* We skip spaces */
986                    ptr = skipspaces(line);
987    
988                    /* Skip comment lines or empty lines */
989                    if(iscomment(ptr) || *ptr == '\0') {
990                            free(line);
991                            continue;
992                    }
993    
994                    /* Reset this field that is optional */
995                  s->scaled_length = 0;                  s->scaled_length = 0;
         n = fscanf(f, "%c %d %d %d %d %d %d\n", &type, &s->quant, &s->blks[0], &s->blks[1], &s->blks[2], &s->length, &s->scaled_length);  
         if (n == EOF) break;  
                 if (n < 7) {  
                         not_scaled = 1;  
                 }  
996    
997          if (type == 'i') {                  /* Convert the fields */
998                    fields = sscanf(ptr,
999                                                    "%c %d %d %d %d %d %d %d\n",
1000                                                    &type,
1001                                                    &s->quant,
1002                                                    &s->blks[0], &s->blks[1], &s->blks[2],
1003                                                    &s->length, &s->invariant /* not really yet */,
1004                                                    &s->scaled_length);
1005    
1006                    /* Free line buffer, we don't need it anymore */
1007                    free(line);
1008    
1009                    /* Fail silently, this has probably been warned in
1010                     * statsfile_count_frames */
1011                    if(fields != 7 && fields != 8)
1012                            continue;
1013    
1014                    /* Convert frame type and compute the invariant length part */
1015                    switch(type) {
1016                    case 'i':
1017                    case 'I':
1018              s->type = XVID_TYPE_IVOP;              s->type = XVID_TYPE_IVOP;
1019          }else if (type == 'p' || type == 's') {                          s->invariant /= INVARIANT_HEADER_PART_IVOP;
1020                            break;
1021                    case 'p':
1022                    case 'P':
1023                    case 's':
1024                    case 'S':
1025              s->type = XVID_TYPE_PVOP;              s->type = XVID_TYPE_PVOP;
1026          }else if (type == 'b') {                          s->invariant /= INVARIANT_HEADER_PART_PVOP;
1027                            break;
1028                    case 'b':
1029                    case 'B':
1030              s->type = XVID_TYPE_BVOP;              s->type = XVID_TYPE_BVOP;
1031          }else{  /* unknown type */                          s->invariant /= INVARIANT_HEADER_PART_BVOP;
1032              DPRINTF(XVID_DEBUG_RC, "unknown stats frame type; assuming pvop\n");                          break;
1033              s->type = XVID_TYPE_PVOP;                  default:
1034                            /* Same as before, fail silently */
1035                            continue;
1036          }          }
1037    
1038          i++;                  /* Ok it seems it's been processed correctly */
1039                    processed_entries++;
1040      }      }
1041    
1042      rc->num_frames = i;          /* Close the file */
   
1043          fclose(f);          fclose(f);
1044    
1045      return 1;          return(0);
 }  
   
 #if 0  
 static void print_stats(rc_2pass2_t * rc)  
 {  
     int i;  
     DPRINTF(XVID_DEBUG_RC, "type quant length scaled_length\n");  
         for (i = 0; i < rc->num_frames; i++) {  
         stat_t * s = &rc->stats[i];  
         DPRINTF(XVID_DEBUG_RC, "%d %d %d %d\n", s->type, s->quant, s->length, s->scaled_length);  
     }  
1046  }  }
 #endif  
1047    
1048  /* pre-process the statistics data  /* pre-process the statistics data
1049      - for each type, count, tot_length, min_length, max_length   * - for each type, count, tot_length, min_length, max_length
1050      - set keyframes_locations   * - set keyframes_locations, tot_prescaled */
 */  
   
1051  static void  static void
1052  pre_process0(rc_2pass2_t * rc)  first_pass_stats_prepare_data(rc_2pass2_t * rc)
1053  {  {
1054      int i,j;      int i,j;
1055    
1056          /*          /* *rc fields initialization
          * *rc fields initialization  
1057           * NB: INT_MAX and INT_MIN are used in order to be immediately replaced           * NB: INT_MAX and INT_MIN are used in order to be immediately replaced
1058           *     with real values of the 1pass           *     with real values of the 1pass */
          */  
1059           for (i=0; i<3; i++) {           for (i=0; i<3; i++) {
1060                  rc->count[i]=0;                  rc->count[i]=0;
1061                  rc->tot_length[i] = 0;                  rc->tot_length[i] = 0;
1062                    rc->tot_invariant[i] = 0;
1063                  rc->min_length[i] = INT_MAX;                  rc->min_length[i] = INT_MAX;
1064      }      }
1065    
1066          rc->max_length = INT_MIN;          rc->max_length = INT_MIN;
1067            rc->tot_weighted = 0;
1068    
1069          /*          /* Loop through all frames and find/compute all the stuff this function
1070           * Loop through all frames and find/compute all the stuff this function           * is supposed to do */
          * is supposed to do  
          */  
1071          for (i=j=0; i<rc->num_frames; i++) {          for (i=j=0; i<rc->num_frames; i++) {
1072                  stat_t * s = &rc->stats[i];                  twopass_stat_t * s = &rc->stats[i];
1073    
1074                  rc->count[s->type-1]++;                  rc->count[s->type-1]++;
1075                  rc->tot_length[s->type-1] += s->length;                  rc->tot_length[s->type-1] += s->length;
1076                    rc->tot_invariant[s->type-1] += s->invariant;
1077                    if (s->zone_mode != XVID_ZONE_QUANT)
1078                            rc->tot_weighted += (int)(s->weight*(s->length - s->invariant));
1079    
1080                  if (s->length < rc->min_length[s->type-1]) {                  if (s->length < rc->min_length[s->type-1]) {
1081                          rc->min_length[s->type-1] = s->length;                          rc->min_length[s->type-1] = s->length;
# Line 793  Line 1091 
1091                  }                  }
1092          }          }
1093    
1094          /*          /* NB:
          * Nota Bene:  
1095           * The "per sequence" overflow system considers a natural sequence to be           * The "per sequence" overflow system considers a natural sequence to be
1096           * formed by all frames between two iframes, so if we want to make sure           * formed by all frames between two iframes, so if we want to make sure
1097           * the system does not go nuts during last sequence, we force the last           * the system does not go nuts during last sequence, we force the last
1098           * frame to appear in the keyframe locations array.           * frame to appear in the keyframe locations array. */
          */  
1099      rc->keyframe_locations[j] = i;      rc->keyframe_locations[j] = i;
1100    
1101          DPRINTF(XVID_DEBUG_RC, "Min 1st pass IFrame length: %d\n", rc->min_length[0]);          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Min 1st pass IFrame length: %d\n", rc->min_length[0]);
1102          DPRINTF(XVID_DEBUG_RC, "Min 1st pass PFrame length: %d\n", rc->min_length[1]);          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Min 1st pass PFrame length: %d\n", rc->min_length[1]);
1103          DPRINTF(XVID_DEBUG_RC, "Min 1st pass BFrame length: %d\n", rc->min_length[2]);          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Min 1st pass BFrame length: %d\n", rc->min_length[2]);
1104  }  }
1105    
1106  /* calculate zone weight "center" */  /* calculate zone weight "center" */
   
1107  static void  static void
1108  zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create)  zone_process(rc_2pass2_t *rc, const xvid_plg_create_t * create)
1109  {  {
1110      int i,j;      int i,j;
1111      int n = 0;      int n = 0;
1112    
     rc->avg_weight = 0.0;  
1113      rc->tot_quant = 0;      rc->tot_quant = 0;
1114            rc->tot_quant_invariant = 0;
1115    
1116      if (create->num_zones == 0) {      if (create->num_zones == 0) {
1117          for (j = 0; j < rc->num_frames; j++) {          for (j = 0; j < rc->num_frames; j++) {
1118              rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;              rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;
1119              rc->stats[j].weight = 1.0;              rc->stats[j].weight = 1.0;
1120          }          }
         rc->avg_weight += rc->num_frames * 1.0;  
1121          n += rc->num_frames;          n += rc->num_frames;
1122      }      }
1123    
# Line 833  Line 1126 
1126    
1127          int next = (i+1<create->num_zones) ? create->zones[i+1].frame : rc->num_frames;          int next = (i+1<create->num_zones) ? create->zones[i+1].frame : rc->num_frames;
1128    
1129                    /* Zero weight make no sense */
1130                    if (create->zones[i].increment == 0) create->zones[i].increment = 1;
1131                    /* And obviously an undetermined infinite makes even less sense */
1132                    if (create->zones[i].base == 0) create->zones[i].base = 1;
1133    
1134          if (i==0 && create->zones[i].frame > 0) {          if (i==0 && create->zones[i].frame > 0) {
1135              for (j = 0; j < create->zones[i].frame && j < rc->num_frames; j++) {              for (j = 0; j < create->zones[i].frame && j < rc->num_frames; j++) {
1136                  rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;                  rc->stats[j].zone_mode = XVID_ZONE_WEIGHT;
1137                  rc->stats[j].weight = 1.0;                  rc->stats[j].weight = 1.0;
1138              }              }
             rc->avg_weight += create->zones[i].frame * 1.0;  
1139              n += create->zones[i].frame;              n += create->zones[i].frame;
1140          }          }
1141    
# Line 848  Line 1145 
1145                  rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base;                  rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base;
1146              }              }
1147              next -= create->zones[i].frame;              next -= create->zones[i].frame;
             rc->avg_weight += (double)(next * create->zones[i].increment) / (double)create->zones[i].base;  
1148              n += next;              n += next;
1149          }else{  // XVID_ZONE_QUANT                  } else{  /* XVID_ZONE_QUANT */
1150              for (j = create->zones[i].frame; j < next && j < rc->num_frames; j++ ) {              for (j = create->zones[i].frame; j < next && j < rc->num_frames; j++ ) {
1151                  rc->stats[j].zone_mode = XVID_ZONE_QUANT;                  rc->stats[j].zone_mode = XVID_ZONE_QUANT;
1152                  rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base;                  rc->stats[j].weight = (double)create->zones[i].increment / (double)create->zones[i].base;
1153                  rc->tot_quant += rc->stats[j].length;                  rc->tot_quant += rc->stats[j].length;
1154                                    rc->tot_quant_invariant += rc->stats[j].invariant;
1155              }              }
1156          }          }
1157      }      }
     rc->avg_weight = n>0 ? rc->avg_weight/n : 1.0;  
   
     DPRINTF(XVID_DEBUG_RC, "center_weight: %f (for %i frames);   fixed_bytes: %i\n", rc->avg_weight, n, rc->tot_quant);  
1158  }  }
1159    
1160    
1161  /* scale the curve */  /* scale the curve */
   
1162  static void  static void
1163  internal_scale(rc_2pass2_t *rc)  first_pass_scale_curve_internal(rc_2pass2_t *rc)
1164  {  {
1165          int64_t target  = rc->target - rc->tot_quant;          int64_t target;
1166          int64_t pass1_length = rc->tot_length[0] + rc->tot_length[1] + rc->tot_length[2] - rc->tot_quant;          int64_t total_invariant;
1167          double scaler;          double scaler;
1168          int i, num_MBs;          int i, num_MBs;
1169    
1170            /* We only scale texture data ! */
1171            total_invariant  = rc->tot_invariant[XVID_TYPE_IVOP-1];
1172            total_invariant += rc->tot_invariant[XVID_TYPE_PVOP-1];
1173            total_invariant += rc->tot_invariant[XVID_TYPE_BVOP-1];
1174            /* don't forget to substract header bytes used in quant zones, otherwise we
1175             * counting them twice */
1176            total_invariant -= rc->tot_quant_invariant;
1177    
1178            /* We remove the bytes used by the fixed quantizer zones during first pass
1179             * with the same quants, so we know very precisely how much that
1180             * represents */
1181            target  = rc->target;
1182            target -= rc->tot_quant;
1183    
1184          /* Let's compute a linear scaler in order to perform curve scaling */          /* Let's compute a linear scaler in order to perform curve scaling */
1185          scaler = (double)target / (double)pass1_length;          scaler = (double)(target - total_invariant) / (double)(rc->tot_weighted);
1186    
1187          if (target <= 0 || pass1_length <= 0 || target >= pass1_length) {  #ifdef SMART_OVERFLOW_SETTING
1188                  DPRINTF(XVID_DEBUG_RC, "WARNING: Undersize detected\n");          if (scaler > 0.9) {
1189          scaler = 1.0;                  rc->param.max_overflow_degradation *= 5;
1190                    rc->param.max_overflow_improvement *= 5;
1191                    rc->param.overflow_control_strength *= 3;
1192            } else if (scaler > 0.6) {
1193                    rc->param.max_overflow_degradation *= 2;
1194                    rc->param.max_overflow_improvement *= 2;
1195                    rc->param.overflow_control_strength *= 2;
1196            } else {
1197                    rc->min_quant = 2;
1198          }          }
1199    #endif
1200    
1201      DPRINTF(XVID_DEBUG_RC,          /* Compute min frame lengths (for each frame type) according to the number
1202                          "Before correction: target=%i, tot_length=%i, scaler=%f\n",           * of MBs. We sum all block type counters of frame 0, this gives us the
1203                          (int)target, (int)pass1_length, scaler);           * number of MBs.
   
         /*  
          * Compute min frame lengths (for each frame type) according to the number  
          * of MBs. We sum all blocks count from frame 0 (should be an IFrame, so  
          * blocks[0] should be enough) to know how many MBs there are.  
1204           *           *
1205           * We compare these hardcoded values with observed values in first pass           * We compare these hardcoded values with observed values in first pass
1206           * (determined in pre_process0).Then we keep the real minimum.           * (determined in pre_process0).Then we keep the real minimum. */
          */  
         num_MBs = rc->stats[0].blks[0] + rc->stats[0].blks[1] + rc->stats[0].blks[2];  
   
         if(rc->min_length[0] > ((num_MBs*22) + 240) / 8)  
                 rc->min_length[0] = ((num_MBs*22) + 240) / 8;  
   
         if(rc->min_length[1] > ((num_MBs) + 88)  / 8)  
                 rc->min_length[1] = ((num_MBs) + 88)  / 8;  
1207    
1208          if(rc->min_length[2] > 8)          /* Number of MBs */
1209                  rc->min_length[2] = 8;          num_MBs  = rc->stats[0].blks[0];
1210            num_MBs += rc->stats[0].blks[1];
1211            num_MBs += rc->stats[0].blks[2];
1212    
1213            /* Minimum for I frames */
1214            if(rc->min_length[XVID_TYPE_IVOP-1] > ((num_MBs*22) + 240) / 8)
1215                    rc->min_length[XVID_TYPE_IVOP-1] = ((num_MBs*22) + 240) / 8;
1216    
1217            /* Minimum for P/S frames */
1218            if(rc->min_length[XVID_TYPE_PVOP-1] > ((num_MBs) + 88)  / 8)
1219                    rc->min_length[XVID_TYPE_PVOP-1] = ((num_MBs) + 88)  / 8;
1220    
1221            /* Minimum for B frames */
1222            if(rc->min_length[XVID_TYPE_BVOP-1] > 8)
1223                    rc->min_length[XVID_TYPE_BVOP-1] = 8;
1224    
1225          /*          /* Perform an initial scale pass.
1226           * Perform an initial scale pass.           *
1227           * If a frame size is scaled underneath our hardcoded minimums, then we           * If a frame size is scaled underneath our hardcoded minimums, then we
1228           * force the frame size to the minimum, and deduct the original & scaled           * force the frame size to the minimum, and deduct the original & scaled
1229           * frame length from the original and target total lengths           * frame length from the original and target total lengths */
          */  
1230          for (i=0; i<rc->num_frames; i++) {          for (i=0; i<rc->num_frames; i++) {
1231                  stat_t * s = &rc->stats[i];                  twopass_stat_t * s = &rc->stats[i];
1232                  int len;                  int len;
1233    
1234                    /* No need to scale frame length for which a specific quantizer is
1235                     * specified thanks to zones */
1236          if (s->zone_mode == XVID_ZONE_QUANT) {          if (s->zone_mode == XVID_ZONE_QUANT) {
1237              s->scaled_length = s->length;              s->scaled_length = s->length;
1238                          continue;                          continue;
1239                  }                  }
1240    
1241                  /* Compute the scaled length */                  /* Compute the scaled length -- only non invariant data length is scaled */
1242                  len = (int)((double)s->length * scaler * s->weight / rc->avg_weight);                  len = s->invariant + (int)((double)(s->length-s->invariant) * scaler * s->weight);
1243    
1244                  /* Compare with the computed minimum */                  /* Compare with the computed minimum */
1245                  if (len < rc->min_length[s->type-1]) {                  if (len < rc->min_length[s->type-1]) {
1246                          /* force frame size to our computed minimum */                          /* This is a 'forced size' frame, set its frame size to the
1247                             * computed minimum */
1248                          s->scaled_length = rc->min_length[s->type-1];                          s->scaled_length = rc->min_length[s->type-1];
1249    
1250                            /* Remove both scaled and original size from their respective
1251                             * total counters, as we prepare a second pass for 'regular'
1252                             * frames */
1253                          target -= s->scaled_length;                          target -= s->scaled_length;
                         pass1_length -= s->length;  
1254                  } else {                  } else {
1255                          /* Do nothing for now, we'll scale this later */                          /* Do nothing for now, we'll scale this later */
1256                          s->scaled_length = 0;                          s->scaled_length = 0;
1257                  }                  }
1258          }          }
1259    
1260          /* Correct the scaler for all non forced frames */          /* The first pass on data substracted all 'forced size' frames from the
1261          scaler = (double)target / (double)pass1_length;           * total counters. Now, it's possible to scale the 'regular' frames. */
   
         /* Detect undersizing */  
     if (target <= 0 || pass1_length <= 0 || target >= pass1_length) {  
                 DPRINTF(XVID_DEBUG_RC, "WARNING: Undersize detected\n");  
                 scaler = 1.0;  
         }  
1262    
1263          DPRINTF(XVID_DEBUG_RC,          /* Scaling factor for 'regular' frames */
1264                          "After correction: target=%i, tot_length=%i, scaler=%f\n",          scaler = (double)(target - total_invariant) / (double)(rc->tot_weighted);
                         (int)target, (int)pass1_length, scaler);  
1265    
1266          /* Do another pass with the new scaler */          /* Do another pass with the new scaler */
1267          for (i=0; i<rc->num_frames; i++) {          for (i=0; i<rc->num_frames; i++) {
1268                  stat_t * s = &rc->stats[i];                  twopass_stat_t * s = &rc->stats[i];
1269    
1270                  /* Ignore frame with forced frame sizes */                  /* Ignore frame with forced frame sizes */
1271                  if (s->scaled_length == 0)                  if (s->scaled_length == 0)
1272                          s->scaled_length = (int)((double)s->length * scaler * s->weight / rc->avg_weight);                          s->scaled_length = s->invariant + (int)((double)(s->length-s->invariant) * scaler * s->weight);
1273          }          }
1274    
1275            /* Job done */
1276            return;
1277  }  }
1278    
1279    /* Apply all user settings to the scaled curve
1280     * This implies:
1281     *   keyframe boosting
1282     *   high/low compression */
1283  static void  static void
1284  pre_process1(rc_2pass2_t * rc)  scaled_curve_apply_advanced_parameters(rc_2pass2_t * rc)
1285  {  {
1286      int i;      int i;
1287      double total1, total2;          int64_t ivop_boost_total;
     uint64_t ivop_boost_total;  
1288    
1289      ivop_boost_total = 0;          /* Reset the rate controller (per frame type) total byte counters */
1290      rc->curve_comp_error = 0;          for (i=0; i<3; i++) rc->tot_scaled_length[i] = 0;
1291    
1292      for (i=0; i<3; i++) {          /* Compute total bytes for each frame type */
1293          rc->tot_scaled_length[i] = 0;          for (i=0; i<rc->num_frames;i++) {
1294                    twopass_stat_t *s = &rc->stats[i];
1295                    rc->tot_scaled_length[s->type-1] += s->scaled_length;
1296      }      }
1297    
1298            /* First we compute the total amount of bits needed, as being described by
1299             * the scaled distribution. During this pass over the complete stats data,
1300             * we see how much bits two user settings will get/give from/to p&b frames:
1301             *  - keyframe boosting
1302             *  - keyframe distance penalty */
1303            rc->KF_idx = 0;
1304            ivop_boost_total = 0;
1305      for (i=0; i<rc->num_frames; i++) {      for (i=0; i<rc->num_frames; i++) {
1306          stat_t * s = &rc->stats[i];                  twopass_stat_t * s = &rc->stats[i];
   
         rc->tot_scaled_length[s->type-1] += s->scaled_length;  
1307    
1308                    /* Some more work is needed for I frames */
1309          if (s->type == XVID_TYPE_IVOP) {          if (s->type == XVID_TYPE_IVOP) {
1310              ivop_boost_total += s->scaled_length * rc->param.keyframe_boost / 100;                          int ivop_boost;
1311    
1312                            /* Accumulate bytes needed for keyframe boosting */
1313                            ivop_boost = s->scaled_length*rc->param.keyframe_boost/100;
1314    
1315    #if 0 /* ToDo: decide how to apply kfthresholding */
1316    #endif
1317                            /* If the frame size drops under the minimum length, then cap ivop_boost */
1318                            if (ivop_boost + s->scaled_length < rc->min_length[XVID_TYPE_IVOP-1])
1319                                    ivop_boost = rc->min_length[XVID_TYPE_IVOP-1] - s->scaled_length;
1320    
1321                            /* Accumulate the ivop boost */
1322                            ivop_boost_total += ivop_boost;
1323    
1324                            /* Don't forget to update the keyframe index */
1325                            rc->KF_idx++;
1326          }          }
1327      }      }
1328    
1329      rc->movie_curve = ((double)(rc->tot_scaled_length[XVID_TYPE_PVOP-1] + rc->tot_scaled_length[XVID_TYPE_BVOP-1] + ivop_boost_total) /          /* Initialize the IBoost tax ratio for P/S/B frames
1330                                          (rc->tot_scaled_length[XVID_TYPE_PVOP-1] + rc->tot_scaled_length[XVID_TYPE_BVOP-1]));           *
1331             * This ratio has to be applied to p/b/s frames in order to reserve
1332             * additional bits for keyframes (keyframe boosting) or if too much
1333             * keyframe distance is applied, bits retrieved from the keyframes.
1334             *
1335             * ie pb_length *= rc->pb_iboost_tax_ratio;
1336             *
1337             *    gives the ideal length of a p/b frame */
1338    
1339            /* Compute the total length of p/b/s frames (temporary storage into
1340             * movie_curve) */
1341            rc->pb_iboost_tax_ratio  = (double)rc->tot_scaled_length[XVID_TYPE_PVOP-1];
1342            rc->pb_iboost_tax_ratio += (double)rc->tot_scaled_length[XVID_TYPE_BVOP-1];
1343    
1344            /* Compute the ratio described above
1345             *     taxed_total = sum(0, n, tax*scaled_length)
1346             * <=> taxed_total = tax.sum(0, n, scaled_length)
1347             * <=> tax = taxed_total / original_total */
1348            rc->pb_iboost_tax_ratio =
1349                    (rc->pb_iboost_tax_ratio - ivop_boost_total) /
1350                    rc->pb_iboost_tax_ratio;
1351    
1352            DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- IFrame boost tax ratio:%.2f\n",
1353                            rc->pb_iboost_tax_ratio);
1354    
1355            /* Compute the average size of frames per frame type */
1356      for(i=0; i<3; i++) {      for(i=0; i<3; i++) {
1357          if (rc->count[i] == 0 || rc->movie_curve == 0) {                  /* Special case for missing type or weird case */
1358                    if (rc->count[i] == 0 || rc->pb_iboost_tax_ratio == 0) {
1359              rc->avg_length[i] = 1;              rc->avg_length[i] = 1;
1360          }else{          }else{
1361              rc->avg_length[i] = rc->tot_scaled_length[i] / rc->count[i] / rc->movie_curve;                          rc->avg_length[i] = rc->tot_scaled_length[i];
1362          }  
1363                            if (i == (XVID_TYPE_IVOP-1)) {
1364                                    /* I Frames total has to be added the boost total */
1365                                    rc->avg_length[i] += ivop_boost_total;
1366                            } else {
1367                                    /* P/B frames has to taxed */
1368                                    rc->avg_length[i] *= rc->pb_iboost_tax_ratio;
1369      }      }
1370    
1371      /* --- */                          /* Finally compute the average frame size */
1372                            rc->avg_length[i] /= (double)rc->count[i];
1373                    }
1374            }
1375    
1376      total1=total2=0;          /* Assymetric curve compression */
1377            if (rc->param.curve_compression_high || rc->param.curve_compression_low) {
1378                    double symetric_total;
1379                    double assymetric_delta_total;
1380    
1381                    /* Like I frame boosting, assymetric curve compression modifies the total
1382                     * amount of needed bits, we must compute the ratio so we can prescale
1383                     lengths */
1384                    symetric_total = 0;
1385                    assymetric_delta_total = 0;
1386      for (i=0; i<rc->num_frames; i++) {      for (i=0; i<rc->num_frames; i++) {
1387          stat_t * s = &rc->stats[i];                          double assymetric_delta;
1388                            double dbytes;
1389                            twopass_stat_t * s = &rc->stats[i];
1390    
1391                            /* I Frames are not concerned by assymetric scaling */
1392                            if (s->type == XVID_TYPE_IVOP)
1393                                    continue;
1394    
1395          if (s->type != XVID_TYPE_IVOP) {                          /* During the real run, we would have to apply the iboost tax */
1396              double dbytes,dbytes2;                          dbytes = s->scaled_length * rc->pb_iboost_tax_ratio;
1397    
1398              dbytes = s->scaled_length / rc->movie_curve;                          /* Update the symmetric curve compression total */
1399              dbytes2 = 0; /* XXX: warning */                          symetric_total += dbytes;
             total1 += dbytes;  
             if (s->type == XVID_TYPE_BVOP)  
                 dbytes *= rc->avg_length[XVID_TYPE_PVOP-1] / rc->avg_length[XVID_TYPE_BVOP-1];  
1400    
1401                          if (dbytes > rc->avg_length[XVID_TYPE_PVOP-1]) {                          /* Apply assymetric curve compression */
1402                                  dbytes2=((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_high / 100.0);                          if (dbytes > rc->avg_length[s->type-1])
1403                                    assymetric_delta = (rc->avg_length[s->type-1] - dbytes) * (double)rc->param.curve_compression_high / 100.0f;
1404                            else
1405                                    assymetric_delta = (rc->avg_length[s->type-1] - dbytes) * (double)rc->param.curve_compression_low  / 100.0f;
1406    
1407                            /* Cap to the minimum frame size if needed */
1408                            if (dbytes + assymetric_delta < rc->min_length[s->type-1])
1409                                    assymetric_delta = rc->min_length[s->type-1] - dbytes;
1410    
1411                            /* Accumulate after assymetric curve compression */
1412                            assymetric_delta_total += assymetric_delta;
1413                    }
1414    
1415                    /* Compute the tax that all p/b frames have to pay in order to respect the
1416                     * bit distribution changes that the assymetric compression curve imposes
1417                     * We want assymetric_total = sum(0, n-1, tax.scaled_length)
1418                     *      ie assymetric_total = ratio.sum(0, n-1, scaled_length)
1419                     *         ratio = assymetric_total / symmetric_total */
1420                    rc->assymetric_tax_ratio = ((double)symetric_total - (double)assymetric_delta_total) / (double)symetric_total;
1421                          } else {                          } else {
1422                                  dbytes2 = ((double)dbytes + (rc->avg_length[XVID_TYPE_PVOP-1] - dbytes) * rc->param.curve_compression_low / 100.0);                  rc->assymetric_tax_ratio = 1.0f;
1423                          }                          }
1424    
1425              if (s->type == XVID_TYPE_BVOP) {          DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- Assymetric tax ratio:%.2f\n", rc->assymetric_tax_ratio);
1426                              dbytes2 *= rc->avg_length[XVID_TYPE_BVOP-1] / rc->avg_length[XVID_TYPE_PVOP-1];  
1427                              if (dbytes2 < rc->min_length[XVID_TYPE_BVOP-1])          /* Last bits that need to be reset */
1428                                      dbytes2 = rc->min_length[XVID_TYPE_BVOP-1];          rc->overflow = 0;
1429              }else{          rc->KFoverflow = 0;
1430                              if (dbytes2 < rc->min_length[XVID_TYPE_PVOP-1])          rc->KFoverflow_partial = 0;
1431                                      dbytes2 = rc->min_length[XVID_TYPE_PVOP-1];          rc->KF_idx = 0;
1432            rc->desired_total = 0;
1433            rc->real_total = 0;
1434    
1435            /* Job done */
1436            return;
1437    }
1438    
1439    /*****************************************************************************
1440     * VBV compliancy check and scale
1441     * MPEG-4 standard specifies certain restrictions for bitrate/framesize in VBR
1442     * to enable playback on devices with limited readspeed and memory (and which
1443     * aren't...)
1444     *
1445     * DivX profiles have 2 criteria: VBV as in MPEG standard
1446     *                                a limit on peak bitrate for any 3 seconds
1447     *
1448     * But if VBV is fulfilled, peakrate is automatically fulfilled in any profile
1449     * define so far, so we check for it (for completeness) but correct only VBV
1450     *
1451     *****************************************************************************/
1452    
1453    #define VBV_COMPLIANT 0
1454    #define VBV_UNDERFLOW 1 /* video buffer runs empty */
1455    #define VBV_OVERFLOW 2  /* doesn't exist for VBR encoding */
1456    #define VBV_PEAKRATE 4  /* peak bitrate (within 3s) violated */
1457    
1458    static int check_curve_for_vbv_compliancy(rc_2pass2_t * rc, const float fps)
1459    {
1460    /* We do all calculations in float, for higher accuracy,
1461       and in bytes for convenience
1462    
1463       typical values from DivX Home Theater profile:
1464       vbv_size= 384*1024 (384kB), vbv_initial= 288*1024 (75% fill)
1465       maxrate= 4000000 (4MBps), peakrate= 10000000 (10MBps)
1466    
1467       PAL: offset3s = 75 (3 seconds of 25fps)
1468       NTSC: offset3s = 90 (3 seconds of 29.97fps) or 72 (3 seconds of 23.976fps)
1469    */
1470    
1471      const float vbv_size = (float)rc->param.vbv_size/8.f;
1472      float vbvfill = (float)rc->param.vbv_initial/8.f;
1473    
1474      const float maxrate = (float)rc->param.vbv_maxrate;
1475      const float peakrate = (float)rc->param.vbv_peakrate;
1476      const float r0 = (int)(maxrate/fps+0.5)/8.f;
1477    
1478      int bytes3s = 0;
1479      int offset3s = (int)(3.f*fps+0.5);
1480    
1481      int i;
1482      for (i=0; i<rc->num_frames; i++) {
1483    /* DivX 3s peak bitrate check  */
1484    
1485        bytes3s += rc->stats[i].scaled_length;
1486        if (i>=offset3s)
1487          bytes3s -= rc->stats[i-offset3s].scaled_length;
1488    
1489        if (8.f*bytes3s > 3*peakrate)
1490          return VBV_PEAKRATE;
1491    
1492    /* update vbv fill level */
1493    
1494        vbvfill += r0 - rc->stats[i].scaled_length;
1495    
1496    /* this check is _NOT_ an "overflow"! only reading from disk stops then */
1497        if (vbvfill > vbv_size)
1498          vbvfill = vbv_size;
1499    
1500    /* but THIS would be an underflow. report it! */
1501        if (vbvfill < 0)
1502          return VBV_UNDERFLOW;
1503              }              }
1504              total2 += dbytes2;  
1505      return VBV_COMPLIANT;
1506          }          }
1507    /* TODO: store min(vbvfill) and print "minimum buffer fill" */
1508    
1509    
1510    static int scale_curve_for_vbv_compliancy(rc_2pass2_t * rc, const float fps)
1511    {
1512    /* correct any VBV violations. Peak bitrate violations disappears
1513       by this automatically
1514    
1515       This implementation follows
1516    
1517       Westerink, Rajagopalan, Gonzales "Two-pass MPEG-2 variable-bitrate encoding"
1518       IBM J. RES. DEVELOP. VOL 43, No. 4, July 1999, p.471--488
1519    
1520       Thanks, guys! This paper rocks!!!
1521    */
1522    
1523    /*
1524        For each scene of len N, we have to check up to N^2 possible buffer fills.
1525        This works well with MPEG-2 where N==12 or so, but for MPEG-4 it's a
1526        little slow...
1527    
1528        TODO: Better control on VBVfill between scenes
1529    */
1530    
1531      const float vbv_size = (float)rc->param.vbv_size/8.f;
1532      const float vbv_initial = (float)rc->param.vbv_initial/8.f;
1533    
1534      const float maxrate = 0.9*rc->param.vbv_maxrate;
1535      const float vbv_low = 0.10f*vbv_size;
1536      const float r0 = (int)(maxrate/fps+0.5)/8.f;
1537    
1538      int i,k,l,n,violation = 0;
1539      float *scenefactor;
1540      int *scenestart;
1541      int *scenelength;
1542    
1543    /* first step: determine how many "scenes" there are and store their boundaries
1544       we could get all this from existing keyframe_positions, somehow, but there we
1545       don't have a min_scenelength, and it's no big deal to get it again.  */
1546    
1547      const int min_scenelength = (int)(fps+0.5);
1548      int num_scenes = 0;
1549      int last_scene = -999;
1550      for (i=0; i<rc->num_frames; i++) {
1551        if ( (rc->stats[i].type == XVID_TYPE_IVOP) && (i-last_scene>min_scenelength) )
1552        {
1553          last_scene = i;
1554          num_scenes++;
1555        }
1556      }
1557    
1558      scenefactor = (float*)malloc( num_scenes*sizeof(float) );
1559      scenestart = (int*)malloc( num_scenes*sizeof(int) );
1560      scenelength = (int*)malloc( num_scenes*sizeof(int) );
1561    
1562      if ((!scenefactor) || (!scenestart) || (!scenelength) )
1563      {
1564        free(scenefactor);
1565        free(scenestart);
1566        free(scenelength);
1567        /* remember: free(0) is valid and does exactly nothing. */
1568        return -1;
1569      }      }
1570    
1571      rc->curve_comp_scale = total1 / total2;  /* count again and safe the length/position */
1572    
1573          DPRINTF(XVID_DEBUG_RC, "middle frame size for asymmetric curve compression: %i\n",    num_scenes = 0;
1574              (int)(rc->avg_length[XVID_TYPE_PVOP-1] * rc->curve_comp_scale));    last_scene = -999;
1575      for (i=0; i<rc->num_frames; i++) {
1576        if ( (rc->stats[i].type == XVID_TYPE_IVOP) && (i-last_scene>min_scenelength) )
1577        {
1578          if (num_scenes>0)
1579            scenelength[num_scenes-1]=i-last_scene;
1580          scenestart[num_scenes]=i;
1581          num_scenes++;
1582          last_scene = i;
1583        }
1584      }
1585      scenelength[num_scenes-1]=i-last_scene;
1586    
1587      rc->overflow = 0;  /* second step: check for each scene, how much we can scale its frames up or down
1588      rc->KFoverflow = 0;     such that the VBV restriction is just fulfilled
1589      rc->KFoverflow_partial = 0;  */
1590      rc->KF_idx = 1;  
1591    
1592    #define R(k,n) (((n)+1-(k))*r0)     /* how much enters the buffer between frame k and n */
1593      for (l=0; l<num_scenes;l++)
1594      {
1595        const int start = scenestart[l];
1596        const int length = scenelength[l];
1597        twopass_stat_t * frames = &rc->stats[start];
1598    
1599        float S0n,Skn;
1600        float f,minf = 99999.f;
1601    
1602        S0n=0.;
1603        for (n=0;n<=length-1;n++)
1604        {
1605          S0n += frames[n].scaled_length;
1606    
1607          k=0;
1608          Skn = S0n;
1609          f = (R(k,n-1) + (vbv_initial - vbv_low)) / Skn;
1610          if (f < minf)
1611            minf = f;
1612    
1613          for (k=1;k<=n;k++)
1614          {
1615            Skn -= frames[k].scaled_length;
1616    
1617            f = (R(k,n-1) + (vbv_size - vbv_low)) / Skn;
1618            if (f < minf)
1619              minf = f;
1620          }
1621        }
1622    
1623        /* special case: at the end, fill buffer up to vbv_initial again
1624           TODO: Allow other values for buffer fill between scenes
1625           e.g. if n=N is smallest f-value, then check for better value */
1626    
1627        n=length;
1628        k=0;
1629        Skn = S0n;
1630        f = R(k,n-1)/Skn;
1631        if (f < minf)
1632          minf = f;
1633    
1634        for (k=1;k<=n-1;k++)
1635        {
1636          Skn -= frames[k].scaled_length;
1637    
1638          f = (R(k,n-1) + (vbv_initial - vbv_low)) / Skn;
1639          if (f < minf)
1640            minf = f;
1641        }
1642    
1643    #ifdef VBV_DEBUG
1644        printf("Scene %d (Frames %d-%d): VBVfactor %f\n", l, start, start+length-1 , minf);
1645    #endif
1646    
1647        scenefactor[l] = minf;
1648      }
1649    #undef R
1650    
1651    /* last step: now we know of any scene how much it can be scaled up or down without
1652       violating VBV. Next, distribute bits from the evil scenes to the good ones */
1653    
1654      do
1655      {
1656        float S_red = 0.f;    /* how much to redistribute */
1657        float S_elig = 0.f;   /* sum of bit for those scenes you can still swallow something*/
1658            float f_red;
1659        int l;
1660    
1661        for (l=0;l<num_scenes;l++)   /* check how much is wrong */
1662        {
1663        const int start = scenestart[l];
1664        const int length = scenelength[l];
1665        twopass_stat_t * frames = &rc->stats[start];
1666    
1667          if (scenefactor[l] == 1.) /* exactly 1 means "don't touch this anymore!" */
1668            continue;
1669    
1670          if (scenefactor[l] > 1.) /* within limits */
1671          {
1672            for (n= 0; n < length; n++)
1673              S_elig += frames[n].scaled_length;
1674          }
1675          else /* underflowing segment */
1676          {
1677            for (n= 0; n < length; n++)
1678            {
1679              float newbytes = (float)frames[n].scaled_length * scenefactor[l];
1680              S_red += (float)frames[n].scaled_length - (float)newbytes;
1681              frames[n].scaled_length =(int)newbytes;
1682            }
1683            scenefactor[l] = 1.f;
1684          }
1685        }
1686    
1687        if (S_red < 1.f)   /* no more underflows */
1688          break;
1689    
1690        if (S_elig < 1.f)
1691        {
1692    #ifdef VBV_DEBUG
1693          fprintf(stderr,"Everything underflowing. \n");
1694    #endif
1695          free(scenefactor);
1696          free(scenestart);
1697          free(scenelength);
1698          return -2;
1699        }
1700    
1701        f_red = (1.f + S_red/S_elig);
1702    
1703    #ifdef VBV_DEBUG
1704        printf("Moving %.0f kB to avoid buffer underflow, correction factor: %.5f\n",S_red/1024.f,f_red);
1705    #endif
1706    
1707        violation=0;
1708        for (l=0; l<num_scenes; l++)   /* scale remaining scenes up to meet total size */
1709        {
1710          const int start = scenestart[l];
1711          const int length = scenelength[l];
1712          twopass_stat_t * frames = &rc->stats[start];
1713    
1714          if (scenefactor[l] == 1.)
1715            continue;
1716    
1717          /* there shouldn't be any segments with factor<1 left, so all the rest is >1 */
1718    
1719          for (n= 0; n < length; n++)
1720          {
1721            frames[n].scaled_length = (int)(frames[n].scaled_length * f_red + 0.5);
1722          }
1723    
1724          scenefactor[l] /= f_red;
1725          if (scenefactor[l] < 1.f)
1726            violation=1;
1727        }
1728    
1729      } while (violation);
1730    
1731      free(scenefactor);
1732      free(scenestart);
1733      free(scenelength);
1734      return 0;
1735    }
1736    
1737    
1738    /*****************************************************************************
1739     * Still more low level stuff (nothing to do with stats treatment)
1740     ****************************************************************************/
1741    
1742    /* This function returns an allocated string containing a complete line read
1743     * from the file starting at the current position */
1744    static char *
1745    readline(FILE *f)
1746    {
1747            char *buffer = NULL;
1748            int buffer_size = 0;
1749            int pos = 0;
1750    
1751            do {
1752                    int c;
1753    
1754                    /* Read a character from the stream */
1755                    c = fgetc(f);
1756    
1757                    /* Is that EOF or new line ? */
1758                    if(c == EOF || c == '\n')
1759                            break;
1760    
1761                    /* Do we have to update buffer ? */
1762                    if(pos >= buffer_size - 1) {
1763                            buffer_size += BUF_SZ;
1764                            buffer = (char*)realloc(buffer, buffer_size);
1765                            if (buffer == NULL)
1766                                    return(NULL);
1767                    }
1768    
1769                    buffer[pos] = c;
1770                    pos++;
1771            } while(1);
1772    
1773            /* Read \n or EOF */
1774            if (buffer == NULL) {
1775                    /* EOF, so we reached the end of the file, return NULL */
1776                    if(feof(f))
1777                            return(NULL);
1778    
1779                    /* Just an empty line with just a newline, allocate a 1 byte buffer to
1780                     * store a zero length string */
1781                    buffer = (char*)malloc(1);
1782                    if(buffer == NULL)
1783                            return(NULL);
1784            }
1785    
1786            /* Zero terminated string */
1787            buffer[pos] = '\0';
1788    
1789            return(buffer);
1790    }
1791    
1792    /* This function returns a pointer to the first non space char in the given
1793     * string */
1794    static char *
1795    skipspaces(char *string)
1796    {
1797            const char spaces[] =
1798                    {
1799                            ' ','\t','\0'
1800                    };
1801            const char *spacechar = spaces;
1802    
1803            if (string == NULL) return(NULL);
1804    
1805            while (*string != '\0') {
1806                    /* Test against space chars */
1807                    while (*spacechar != '\0') {
1808                            if (*string == *spacechar) {
1809                                    string++;
1810                                    spacechar = spaces;
1811                                    break;
1812                            }
1813                            spacechar++;
1814  }  }
1815    
1816                    /* No space char */
1817                    if (*spacechar == '\0') return(string);
1818            }
1819    
1820            return(string);
1821    }
1822    
1823    /* This function returns a boolean that tells if the string is only a
1824     * comment */
1825    static int
1826    iscomment(char *string)
1827    {
1828            const char comments[] =
1829                    {
1830                            '#',';', '%', '\0'
1831                    };
1832            const char *cmtchar = comments;
1833            int iscomment = 0;
1834    
1835            if (string == NULL) return(1);
1836    
1837            string = skipspaces(string);
1838    
1839            while(*cmtchar != '\0') {
1840                    if(*string == *cmtchar) {
1841                            iscomment = 1;
1842                            break;
1843                    }
1844                    cmtchar++;
1845            }
1846    
1847            return(iscomment);
1848    }
1849    
1850    #if 0
1851    static void
1852    stats_print(rc_2pass2_t * rc)
1853    {
1854            int i;
1855            const char frame_type[4] = { 'i', 'p', 'b', 's'};
1856    
1857            for (i=0; i<rc->num_frames; i++) {
1858                    twopass_stat_t *s = &rc->stats[i];
1859                    DPRINTF(XVID_DEBUG_RC, "[xvid rc] -- frame:%d type:%c quant:%d stats:%d scaled:%d desired:%d actual:%d overflow(%c):%.2f\n",
1860                                    i, frame_type[s->type-1], -1, s->length, s->scaled_length,
1861                                    s->desired_length, -1, frame_type[s->type-1], -1.0f);
1862            }
1863    }
1864    #endif

Legend:
Removed from v.1.1.2.16  
changed lines
  Added in v.1.4

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4