--- mbprediction.c 2003/05/22 16:36:07 1.13.2.6 +++ mbprediction.c 2005/09/13 12:12:15 1.17 @@ -1,54 +1,28 @@ - /****************************************************************************** - * * - * This file is part of XviD, a free MPEG-4 video encoder/decoder * - * * - * XviD is an implementation of a part of one or more MPEG-4 Video tools * - * as specified in ISO/IEC 14496-2 standard. Those intending to use this * - * software module in hardware or software products are advised that its * - * use may infringe existing patents or copyrights, and any such use * - * would be at such party's own risk. The original developer of this * - * software module and his/her company, and subsequent editors and their * - * companies, will have no liability for use of this software or * - * modifications or derivatives thereof. * - * * - * XviD is free software; you can redistribute it and/or modify it * - * under the terms of the GNU General Public License as published by * - * the Free Software Foundation; either version 2 of the License, or * - * (at your option) any later version. * - * * - * XviD is distributed in the hope that it will be useful, but * - * WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * - * GNU General Public License for more details. * - * * - * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the Free Software * - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * - * * - ******************************************************************************/ - - /****************************************************************************** - * * - * mbprediction.c * - * * - * Copyright (C) 2001 - Michael Militzer * - * Copyright (C) 2001 - Peter Ross * - * * - * For more information visit the XviD homepage: http://www.xvid.org * - * * - ******************************************************************************/ - - /****************************************************************************** - * * - * Revision history: * - * * - * 29.06.2002 predict_acdc() bounding * - * 12.12.2001 improved calc_acdc_prediction; removed need for memcpy * - * 15.12.2001 moved pmv displacement to motion estimation * - * 30.11.2001 mmx cbp support * - * 17.11.2001 initial version * - * * - ******************************************************************************/ +/***************************************************************************** + * + * XVID MPEG-4 VIDEO CODEC + * - Prediction module - + * + * Copyright (C) 2001-2003 Michael Militzer + * 2001-2003 Peter Ross + * + * This program is free software ; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation ; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY ; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program ; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * $Id: mbprediction.c,v 1.17 2005/09/13 12:12:15 suxen_drol Exp $ + * + ****************************************************************************/ #include @@ -93,7 +67,7 @@ uint32_t current_quant, int32_t iDcScaler, int16_t predictors[8], - const int bound) + const int bound) { const int mbpos = (y * mb_width) + x; @@ -106,15 +80,15 @@ const int16_t *pTop = default_acdc_values; const int16_t *pDiag = default_acdc_values; - uint32_t index = x + y * mb_width; // current macroblock + uint32_t index = x + y * mb_width; /* current macroblock */ int *acpred_direction = &pMBs[index].acpred_directions[block]; uint32_t i; left = top = diag = current = 0; - // grab left,top and diag macroblocks + /* grab left,top and diag macroblocks */ - // left macroblock + /* left macroblock */ if (x && mbpos >= bound + 1 && (pMBs[index - 1].mode == MODE_INTRA || @@ -122,9 +96,8 @@ left = pMBs[index - 1].pred_values[0]; left_quant = pMBs[index - 1].quant; - //DEBUGI("LEFT", *(left+MBPRED_SIZE)); } - // top macroblock + /* top macroblock */ if (mbpos >= bound + (int)mb_width && (pMBs[index - mb_width].mode == MODE_INTRA || @@ -133,7 +106,7 @@ top = pMBs[index - mb_width].pred_values[0]; top_quant = pMBs[index - mb_width].quant; } - // diag macroblock + /* diag macroblock */ if (x && mbpos >= bound + (int)mb_width + 1 && (pMBs[index - 1 - mb_width].mode == MODE_INTRA || @@ -144,7 +117,7 @@ current = pMBs[index].pred_values[0]; - // now grab pLeft, pTop, pDiag _blocks_ + /* now grab pLeft, pTop, pDiag _blocks_ */ switch (block) { @@ -211,17 +184,16 @@ break; } - // determine ac prediction direction & ac/dc predictor - // place rescaled ac/dc predictions into predictors[] for later use - + /* determine ac prediction direction & ac/dc predictor place rescaled ac/dc + * predictions into predictors[] for later use */ if (abs(pLeft[0] - pDiag[0]) < abs(pDiag[0] - pTop[0])) { - *acpred_direction = 1; // vertical + *acpred_direction = 1; /* vertical */ predictors[0] = DIV_DIV(pTop[0], iDcScaler); for (i = 1; i < 8; i++) { predictors[i] = rescale(top_quant, current_quant, pTop[i]); } } else { - *acpred_direction = 2; // horizontal + *acpred_direction = 2; /* horizontal */ predictors[0] = DIV_DIV(pLeft[0], iDcScaler); for (i = 1; i < 8; i++) { predictors[i] = rescale(left_quant, current_quant, pLeft[i + 7]); @@ -231,16 +203,20 @@ /* decoder: add predictors to dct_codes[] and - store current coeffs to pred_values[] for future prediction + store current coeffs to pred_values[] for future prediction */ +/* Up to this version, no DC clipping was performed, so we try to be backward + * compatible to avoid artifacts */ +#define BS_VERSION_BUGGY_DC_CLIPPING 34 void add_acdc(MACROBLOCK * pMB, uint32_t block, int16_t dct_codes[64], uint32_t iDcScaler, - int16_t predictors[8]) + int16_t predictors[8], + const int bsversion) { uint8_t acpred_direction = pMB->acpred_directions[block]; int16_t *pCurrent = pMB->pred_values[block]; @@ -248,8 +224,11 @@ DPRINTF(XVID_DEBUG_COEFF,"predictor[0] %i\n", predictors[0]); - dct_codes[0] += predictors[0]; // dc prediction - pCurrent[0] = dct_codes[0] * iDcScaler; + dct_codes[0] += predictors[0]; /* dc prediction */ + pCurrent[0] = dct_codes[0]*iDcScaler; + if (!bsversion || bsversion > BS_VERSION_BUGGY_DC_CLIPPING) { + pCurrent[0] = CLIP(pCurrent[0], -2048, 2047); + } if (acpred_direction == 1) { for (i = 1; i < 8; i++) { @@ -280,8 +259,8 @@ -// ****************************************************************** -// ****************************************************************** +/***************************************************************************** + ****************************************************************************/ /* encoder: subtract predictors from qcoeff[] and calculate S1/S2 @@ -306,6 +285,7 @@ /* store current coeffs to pred_values[] for future prediction */ pCurrent[0] = qcoeff[0] * iDcScaler; + pCurrent[0] = CLIP(pCurrent[0], -2048, 2047); for (i = 1; i < 8; i++) { pCurrent[i] = qcoeff[i]; pCurrent[i + 7] = qcoeff[i * 8]; @@ -325,7 +305,7 @@ S1 += abs(level); predictors[i] = level; } - } else // acpred_direction == 2 + } else /* acpred_direction == 2 */ { for (i = 1; i < 8; i++) { int16_t level; @@ -362,6 +342,7 @@ /* store current coeffs to pred_values[] for future prediction */ pCurrent[0] = qcoeff[0] * iDcScaler; + pCurrent[0] = CLIP(pCurrent[0], -2048, 2047); for (i = 1; i < 8; i++) { pCurrent[i] = qcoeff[i]; pCurrent[i + 7] = qcoeff[i * 8]; @@ -372,11 +353,7 @@ qcoeff[0] = qcoeff[0] - predictors[0]; /* calc cost before ac prediction */ -#ifdef BIGLUT - Z2 = CodeCoeff_CalcBits(qcoeff, intra_table, scan_tables[0], 1); -#else Z2 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[0]); -#endif /* apply ac prediction & calc cost*/ if (direction == 1) { @@ -385,7 +362,7 @@ qcoeff[i] -= predictors[i]; predictors[i] = qcoeff[i]; } - }else{ // acpred_direction == 2 + }else{ /* acpred_direction == 2 */ for (i = 1; i < 8; i++) { tmp[i] = qcoeff[i*8]; qcoeff[i*8] -= predictors[i]; @@ -393,18 +370,14 @@ } } -#ifdef BIGLUT - Z1 = CodeCoeff_CalcBits(qcoeff, intra_table, scan_tables[direction], 1); -#else Z1 = CodeCoeffIntra_CalcBits(qcoeff, scan_tables[direction]); -#endif /* undo prediction */ if (direction == 1) { - for (i = 1; i < 8; i++) + for (i = 1; i < 8; i++) qcoeff[i] = tmp[i]; - }else{ // acpred_direction == 2 - for (i = 1; i < 8; i++) + }else{ /* acpred_direction == 2 */ + for (i = 1; i < 8; i++) qcoeff[i*8] = tmp[i]; } @@ -422,10 +395,10 @@ unsigned int i; if (pMB->acpred_directions[block] == 1) { - for (i = 1; i < 8; i++) + for (i = 1; i < 8; i++) qcoeff[i] = predictors[i]; } else { - for (i = 1; i < 8; i++) + for (i = 1; i < 8; i++) qcoeff[i * 8] = predictors[i]; } } @@ -462,15 +435,245 @@ } - if (S<=0) { // dont predict + if (S<=0) { /* dont predict */ for (j = 0; j < 6; j++) pMB->acpred_directions[j] = 0; }else{ - for (j = 0; j < 6; j++) + for (j = 0; j < 6; j++) apply_acdc(pMB, j, &qcoeff[j * 64], predictors[j]); } - + pMB->cbp = calc_cbp(qcoeff); } +} + +static const VECTOR zeroMV = { 0, 0 }; + +VECTOR +get_pmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } + + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].mvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].mvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].mvs[rz]; + } else pmv[3] = zeroMV; + + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } + + return pmv[last_cand]; /* no point calculating median mv */ +} + +VECTOR get_pmv2_interlaced(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + lx=x-1; ly=y; lz=1; + tx=x; ty=y-1; tz=2; + rx=x+1; ry=y-1; rz=2; + + lpos=lx+ly*mb_width; + rpos=rx+ry*mb_width; + tpos=tx+ty*mb_width; + + if(lx>=0 && lpos>=bound) + { + num_cand++; + if(mbs[lpos].field_pred) + pmv[1] = mbs[lpos].mvs_avg; + else + pmv[1] = mbs[lpos].mvs[lz]; + } + else + { + pmv[1] = zeroMV; + } + + if(tpos>=bound) + { + num_cand++; + last_cand=2; + if(mbs[tpos].field_pred) + pmv[2] = mbs[tpos].mvs_avg; + else + pmv[2] = mbs[tpos].mvs[tz]; + } + else + { + pmv[2] = zeroMV; + } + + if(rx=bound) + { + num_cand++; + last_cand = 3; + if(mbs[rpos].field_pred) + pmv[3] = mbs[rpos].mvs_avg; + else + pmv[3] = mbs[rpos].mvs[rz]; + } + else + { + pmv[3] = zeroMV; + } + + /* If there're more than one candidate, we return the median vector */ + if(num_cand>1) + { + /* set median */ + pmv[0].x = MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + + return pmv[0]; + } + + return pmv[last_cand]; /* no point calculating median mv */ +} + +VECTOR +get_qpmv2(const MACROBLOCK * const mbs, + const int mb_width, + const int bound, + const int x, + const int y, + const int block) +{ + int lx, ly, lz; /* left */ + int tx, ty, tz; /* top */ + int rx, ry, rz; /* top-right */ + int lpos, tpos, rpos; + int num_cand = 0, last_cand = 1; + + VECTOR pmv[4]; /* left neighbour, top neighbour, top-right neighbour */ + + switch (block) { + case 0: + lx = x - 1; ly = y; lz = 1; + tx = x; ty = y - 1; tz = 2; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 1: + lx = x; ly = y; lz = 0; + tx = x; ty = y - 1; tz = 3; + rx = x + 1; ry = y - 1; rz = 2; + break; + case 2: + lx = x - 1; ly = y; lz = 3; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + break; + default: + lx = x; ly = y; lz = 2; + tx = x; ty = y; tz = 0; + rx = x; ry = y; rz = 1; + } + + lpos = lx + ly * mb_width; + rpos = rx + ry * mb_width; + tpos = tx + ty * mb_width; + + if (lpos >= bound && lx >= 0) { + num_cand++; + pmv[1] = mbs[lpos].qmvs[lz]; + } else pmv[1] = zeroMV; + + if (tpos >= bound) { + num_cand++; + last_cand = 2; + pmv[2] = mbs[tpos].qmvs[tz]; + } else pmv[2] = zeroMV; + + if (rpos >= bound && rx < mb_width) { + num_cand++; + last_cand = 3; + pmv[3] = mbs[rpos].qmvs[rz]; + } else pmv[3] = zeroMV; + + /* If there're more than one candidate, we return the median vector */ + + if (num_cand > 1) { + /* set median */ + pmv[0].x = + MIN(MAX(pmv[1].x, pmv[2].x), + MIN(MAX(pmv[2].x, pmv[3].x), MAX(pmv[1].x, pmv[3].x))); + pmv[0].y = + MIN(MAX(pmv[1].y, pmv[2].y), + MIN(MAX(pmv[2].y, pmv[3].y), MAX(pmv[1].y, pmv[3].y))); + return pmv[0]; + } + return pmv[last_cand]; /* no point calculating median mv */ }