--- mbtransquant.c 2003/11/24 22:06:19 1.21.2.20 +++ mbtransquant.c 2003/05/04 15:15:59 1.22.2.1 @@ -1,32 +1,56 @@ -/***************************************************************************** - * - * XVID MPEG-4 VIDEO CODEC - * - MB Transfert/Quantization functions - - * - * Copyright(C) 2001-2003 Peter Ross - * 2001-2003 Michael Militzer - * 2003 Edouard Gomez - * - * This program is free software ; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation ; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY ; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program ; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - * $Id: mbtransquant.c,v 1.21.2.20 2003/11/24 22:06:19 edgomez Exp $ - * - ****************************************************************************/ + /****************************************************************************** + * * + * This file is part of XviD, a free MPEG-4 video encoder/decoder * + * * + * XviD is an implementation of a part of one or more MPEG-4 Video tools * + * as specified in ISO/IEC 14496-2 standard. Those intending to use this * + * software module in hardware or software products are advised that its * + * use may infringe existing patents or copyrights, and any such use * + * would be at such party's own risk. The original developer of this * + * software module and his/her company, and subsequent editors and their * + * companies, will have no liability for use of this software or * + * modifications or derivatives thereof. * + * * + * XviD is free software; you can redistribute it and/or modify it * + * under the terms of the GNU General Public License as published by * + * the Free Software Foundation; either version 2 of the License, or * + * (at your option) any later version. * + * * + * XviD is distributed in the hope that it will be useful, but * + * WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * + * GNU General Public License for more details. * + * * + * You should have received a copy of the GNU General Public License * + * along with this program; if not, write to the Free Software * + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * + * * + ******************************************************************************/ + + /****************************************************************************** + * * + * mbtransquant.c * + * * + * Copyright (C) 2001 - Peter Ross * + * Copyright (C) 2001 - Michael Militzer * + * * + * For more information visit the XviD homepage: http://www.xvid.org * + * * + ******************************************************************************/ + + /****************************************************************************** + * * + * Revision history: * + * * + * 29.03.2002 interlacing speedup - used transfer strides instead of * + * manual field-to-frame conversion * + * 26.03.2002 interlacing support - moved transfers outside loops * + * 22.12.2001 get_dc_scaler() moved to common.h * + * 19.11.2001 introduced coefficient thresholding (Isibaar) * + * 17.11.2001 initial version * + * * + ******************************************************************************/ -#include -#include #include #include "../portab.h" @@ -35,61 +59,21 @@ #include "../global.h" #include "mem_transfer.h" #include "timer.h" -#include "../bitstream/mbcoding.h" -#include "../bitstream/zigzag.h" #include "../dct/fdct.h" #include "../dct/idct.h" -#include "../quant/quant.h" +#include "../quant/quant_mpeg4.h" +#include "../quant/quant_h263.h" #include "../encoder.h" #include "../image/reduced.h" -#include "../quant/quant_matrix.h" MBFIELDTEST_PTR MBFieldTest; -/* - * Skip blocks having a coefficient sum below this value. This value will be - * corrected according to the MB quantizer to avoid artifacts for quant==1 - */ -#define PVOP_TOOSMALL_LIMIT 1 -#define BVOP_TOOSMALL_LIMIT 3 - -/***************************************************************************** - * Local functions - ****************************************************************************/ +#define TOOSMALL_LIMIT 1 /* skip blocks having a coefficient sum below this value */ -/* permute block and return field dct choice */ -static __inline uint32_t -MBDecideFieldDCT(int16_t data[6 * 64]) -{ - uint32_t field = MBFieldTest(data); - - if (field) - MBFrameToField(data); - - return field; -} - -/* Performs Forward DCT on all blocks */ static __inline void -MBfDCT(const MBParam * const pParam, - const FRAMEINFO * const frame, - MACROBLOCK * const pMB, - uint32_t x_pos, - uint32_t y_pos, - int16_t data[6 * 64]) +MBfDCT(int16_t data[6 * 64]) { - /* Handles interlacing */ - start_timer(); - pMB->field_dct = 0; - if ((frame->vol_flags & XVID_VOL_INTERLACING) && - (x_pos>0) && (x_posmb_width-1) && - (y_pos>0) && (y_posmb_height-1)) { - pMB->field_dct = MBDecideFieldDCT(data); - } - stop_interlacing_timer(); - - /* Perform DCT */ start_timer(); fdct(&data[0 * 64]); fdct(&data[1 * 64]); @@ -100,428 +84,306 @@ stop_dct_timer(); } -/* Performs Inverse DCT on all blocks */ -static __inline void -MBiDCT(int16_t data[6 * 64], - const uint8_t cbp) -{ - start_timer(); - if(cbp & (1 << (5 - 0))) idct(&data[0 * 64]); - if(cbp & (1 << (5 - 1))) idct(&data[1 * 64]); - if(cbp & (1 << (5 - 2))) idct(&data[2 * 64]); - if(cbp & (1 << (5 - 3))) idct(&data[3 * 64]); - if(cbp & (1 << (5 - 4))) idct(&data[4 * 64]); - if(cbp & (1 << (5 - 5))) idct(&data[5 * 64]); - stop_idct_timer(); -} -/* Quantize all blocks -- Intra mode */ -static __inline void -MBQuantIntra(const MBParam * pParam, - const FRAMEINFO * const frame, - const MACROBLOCK * pMB, - int16_t qcoeff[6 * 64], - int16_t data[6*64]) +static __inline uint32_t +QuantizeInterBlock( int16_t qcoeff[64], + const int16_t data[64], + const uint32_t iQuant, + const uint32_t quant_type) { - int mpeg; - int scaler_lum, scaler_chr; - - quant_intraFuncPtr const quant[2] = - { - quant_h263_intra, - quant_mpeg_intra - }; - - mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); - scaler_lum = get_dc_scaler(pMB->quant, 1); - scaler_chr = get_dc_scaler(pMB->quant, 0); + uint32_t sum; - /* Quantize the block */ start_timer(); - quant[mpeg](&data[0 * 64], &qcoeff[0 * 64], pMB->quant, scaler_lum); - quant[mpeg](&data[1 * 64], &qcoeff[1 * 64], pMB->quant, scaler_lum); - quant[mpeg](&data[2 * 64], &qcoeff[2 * 64], pMB->quant, scaler_lum); - quant[mpeg](&data[3 * 64], &qcoeff[3 * 64], pMB->quant, scaler_lum); - quant[mpeg](&data[4 * 64], &qcoeff[4 * 64], pMB->quant, scaler_chr); - quant[mpeg](&data[5 * 64], &qcoeff[5 * 64], pMB->quant, scaler_chr); + if (quant_type == H263_QUANT) + sum = quant_inter(qcoeff, data, iQuant); + else + sum = quant4_inter(qcoeff, data, iQuant); + stop_quant_timer(); + return sum; } -/* DeQuantize all blocks -- Intra mode */ -static __inline void -MBDeQuantIntra(const MBParam * pParam, - const int iQuant, - int16_t qcoeff[6 * 64], - int16_t data[6*64]) +void +MBTransQuantIntra(const MBParam * const pParam, + FRAMEINFO * const frame, + MACROBLOCK * const pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64]) { - int mpeg; - int scaler_lum, scaler_chr; - quant_intraFuncPtr const dequant[2] = - { - dequant_h263_intra, - dequant_mpeg_intra - }; - - mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); - scaler_lum = get_dc_scaler(iQuant, 1); - scaler_chr = get_dc_scaler(iQuant, 0); + uint32_t stride = pParam->edged_width; + const uint32_t stride2 = stride / 2; + uint32_t next_block = stride * ((frame->global_flags & XVID_REDUCED)?16:8); + int i; + const uint32_t iQuant = pMB->quant; + uint8_t *pY_Cur, *pU_Cur, *pV_Cur; + const IMAGE * const pCurrent = &frame->image; start_timer(); - dequant[mpeg](&qcoeff[0 * 64], &data[0 * 64], iQuant, scaler_lum); - dequant[mpeg](&qcoeff[1 * 64], &data[1 * 64], iQuant, scaler_lum); - dequant[mpeg](&qcoeff[2 * 64], &data[2 * 64], iQuant, scaler_lum); - dequant[mpeg](&qcoeff[3 * 64], &data[3 * 64], iQuant, scaler_lum); - dequant[mpeg](&qcoeff[4 * 64], &data[4 * 64], iQuant, scaler_chr); - dequant[mpeg](&qcoeff[5 * 64], &data[5 * 64], iQuant, scaler_chr); - stop_iquant_timer(); -} - -static int -dct_quantize_trellis_c(int16_t *const Out, - const int16_t *const In, - int Q, - const uint16_t * const Zigzag, - const uint16_t * const QuantMatrix, - int Non_Zero); - -/* Quantize all blocks -- Inter mode */ -static __inline uint8_t -MBQuantInter(const MBParam * pParam, - const FRAMEINFO * const frame, - const MACROBLOCK * pMB, - int16_t data[6 * 64], - int16_t qcoeff[6 * 64], - int bvop, - int limit) -{ - - int i; - uint8_t cbp = 0; - int sum; - int code_block, mpeg; + if ((frame->global_flags & XVID_REDUCED)) + { + pY_Cur = pCurrent->y + (y_pos << 5) * stride + (x_pos << 5); + pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4); + pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4); + + filter_18x18_to_8x8(&data[0 * 64], pY_Cur, stride); + filter_18x18_to_8x8(&data[1 * 64], pY_Cur + 16, stride); + filter_18x18_to_8x8(&data[2 * 64], pY_Cur + next_block, stride); + filter_18x18_to_8x8(&data[3 * 64], pY_Cur + next_block + 16, stride); + filter_18x18_to_8x8(&data[4 * 64], pU_Cur, stride2); + filter_18x18_to_8x8(&data[5 * 64], pV_Cur, stride2); + } else { + pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); + pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); + pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); + + transfer_8to16copy(&data[0 * 64], pY_Cur, stride); + transfer_8to16copy(&data[1 * 64], pY_Cur + 8, stride); + transfer_8to16copy(&data[2 * 64], pY_Cur + next_block, stride); + transfer_8to16copy(&data[3 * 64], pY_Cur + next_block + 8, stride); + transfer_8to16copy(&data[4 * 64], pU_Cur, stride2); + transfer_8to16copy(&data[5 * 64], pV_Cur, stride2); + } + stop_transfer_timer(); - quant_interFuncPtr const quant[2] = - { - quant_h263_inter, - quant_mpeg_inter - }; + /* XXX: rrv+interlacing is buggy */ + start_timer(); + pMB->field_dct = 0; + if ((frame->global_flags & XVID_INTERLACING) && + (x_pos>0) && (x_posmb_width-1) && + (y_pos>0) && (y_posmb_height-1)) { + pMB->field_dct = MBDecideFieldDCT(data); + } + stop_interlacing_timer(); - mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); + MBfDCT(data); for (i = 0; i < 6; i++) { + const uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4); - /* Quantize the block */ start_timer(); - - sum = quant[mpeg](&qcoeff[i*64], &data[i*64], pMB->quant); - - if(sum && (frame->vop_flags & XVID_VOP_TRELLISQUANT)) { - const static uint16_t h263matrix[] = - { - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16, - 16, 16, 16, 16, 16, 16, 16, 16 - }; - sum = dct_quantize_trellis_c(&qcoeff[i*64], &data[i*64], - pMB->quant, &scan_tables[0][0], - (mpeg)?(uint16_t*)get_inter_matrix():h263matrix, - 63); - } + if (pParam->m_quant_type == H263_QUANT) + quant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler); + else + quant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler); stop_quant_timer(); - /* - * We code the block if the sum is higher than the limit and if the first - * two AC coefficients in zig zag order are not zero. - */ - code_block = 0; - if ((sum >= limit) || (qcoeff[i*64+1] != 0) || (qcoeff[i*64+8] != 0)) { - code_block = 1; - } else { + /* speedup: dont decode when encoding only ivops */ + if (pParam->iMaxKeyInterval != 1 || pParam->max_bframes > 0) + { + start_timer(); + if (pParam->m_quant_type == H263_QUANT) + dequant_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler); + else + dequant4_intra(&data[i * 64], &qcoeff[i * 64], iQuant, iDcScaler); + stop_iquant_timer(); - if (bvop && (pMB->mode == MODE_DIRECT || pMB->mode == MODE_DIRECT_NO4V)) { - /* dark blocks prevention for direct mode */ - if ((qcoeff[i*64] < -1) || (qcoeff[i*64] > 0)) - code_block = 1; - } else { - /* not direct mode */ - if (qcoeff[i*64] != 0) - code_block = 1; - } + start_timer(); + idct(&data[i * 64]); + stop_idct_timer(); } - - /* Set the corresponding cbp bit */ - cbp |= code_block << (5 - i); } - return(cbp); -} - -/* DeQuantize all blocks -- Inter mode */ -static __inline void -MBDeQuantInter(const MBParam * pParam, - const int iQuant, - int16_t data[6 * 64], - int16_t qcoeff[6 * 64], - const uint8_t cbp) -{ - int mpeg; + /* speedup: dont decode when encoding only ivops */ + if (pParam->iMaxKeyInterval != 1 || pParam->max_bframes > 0) + { - quant_interFuncPtr const dequant[2] = - { - dequant_h263_inter, - dequant_mpeg_inter - }; + if (pMB->field_dct) { + next_block = stride; + stride *= 2; + } - mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); + start_timer(); + if ((frame->global_flags & XVID_REDUCED)) { + copy_upsampled_8x8_16to8(pY_Cur, &data[0 * 64], stride); + copy_upsampled_8x8_16to8(pY_Cur + 16, &data[1 * 64], stride); + copy_upsampled_8x8_16to8(pY_Cur + next_block, &data[2 * 64], stride); + copy_upsampled_8x8_16to8(pY_Cur + next_block + 16, &data[3 * 64], stride); + copy_upsampled_8x8_16to8(pU_Cur, &data[4 * 64], stride2); + copy_upsampled_8x8_16to8(pV_Cur, &data[5 * 64], stride2); + } else { + transfer_16to8copy(pY_Cur, &data[0 * 64], stride); + transfer_16to8copy(pY_Cur + 8, &data[1 * 64], stride); + transfer_16to8copy(pY_Cur + next_block, &data[2 * 64], stride); + transfer_16to8copy(pY_Cur + next_block + 8, &data[3 * 64], stride); + transfer_16to8copy(pU_Cur, &data[4 * 64], stride2); + transfer_16to8copy(pV_Cur, &data[5 * 64], stride2); + } + stop_transfer_timer(); + } - start_timer(); - if(cbp & (1 << (5 - 0))) dequant[mpeg](&data[0 * 64], &qcoeff[0 * 64], iQuant); - if(cbp & (1 << (5 - 1))) dequant[mpeg](&data[1 * 64], &qcoeff[1 * 64], iQuant); - if(cbp & (1 << (5 - 2))) dequant[mpeg](&data[2 * 64], &qcoeff[2 * 64], iQuant); - if(cbp & (1 << (5 - 3))) dequant[mpeg](&data[3 * 64], &qcoeff[3 * 64], iQuant); - if(cbp & (1 << (5 - 4))) dequant[mpeg](&data[4 * 64], &qcoeff[4 * 64], iQuant); - if(cbp & (1 << (5 - 5))) dequant[mpeg](&data[5 * 64], &qcoeff[5 * 64], iQuant); - stop_iquant_timer(); } -typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS); -typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS); - - -static __inline void -MBTrans8to16(const MBParam * const pParam, - const FRAMEINFO * const frame, - const MACROBLOCK * const pMB, - const uint32_t x_pos, - const uint32_t y_pos, - int16_t data[6 * 64]) +uint8_t +MBTransQuantInter(const MBParam * const pParam, + FRAMEINFO * const frame, + MACROBLOCK * const pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64]) { uint32_t stride = pParam->edged_width; - uint32_t stride2 = stride / 2; - uint32_t next_block = stride * 8; - int32_t cst; - int vop_reduced; + const uint32_t stride2 = stride / 2; + uint32_t next_block = stride * ((frame->global_flags & XVID_REDUCED)?16:8); + int i; + const uint32_t iQuant = pMB->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; + int cbp = 0; + uint32_t sum; const IMAGE * const pCurrent = &frame->image; - transfer_operation_8to16_t * const functions[2] = - { - (transfer_operation_8to16_t *)transfer_8to16copy, - (transfer_operation_8to16_t *)filter_18x18_to_8x8 - }; - transfer_operation_8to16_t *transfer_op = NULL; - vop_reduced = !!(frame->vop_flags & XVID_VOP_REDUCED); + if ((frame->global_flags & XVID_REDUCED)) { + pY_Cur = pCurrent->y + (y_pos << 5) * stride + (x_pos << 5); + pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4); + pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4); + } else { + pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); + pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); + pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); + } - /* Image pointers */ - pY_Cur = pCurrent->y + (y_pos << (4+vop_reduced)) * stride + (x_pos << (4+vop_reduced)); - pU_Cur = pCurrent->u + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced)); - pV_Cur = pCurrent->v + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced)); + start_timer(); + pMB->field_dct = 0; + if ((frame->global_flags & XVID_INTERLACING) && + (x_pos>0) && (x_posmb_width-1) && + (y_pos>0) && (y_posmb_height-1)) { + pMB->field_dct = MBDecideFieldDCT(data); + } + stop_interlacing_timer(); - /* Block size */ - cst = 8<16-bit + * (this is performed already in motion compensation) + */ - /* Do the transfer */ - start_timer(); - transfer_op(&data[0 * 64], pY_Cur, stride); - transfer_op(&data[1 * 64], pY_Cur + cst, stride); - transfer_op(&data[2 * 64], pY_Cur + next_block, stride); - transfer_op(&data[3 * 64], pY_Cur + next_block + cst, stride); - transfer_op(&data[4 * 64], pU_Cur, stride2); - transfer_op(&data[5 * 64], pV_Cur, stride2); - stop_transfer_timer(); -} + sum = QuantizeInterBlock(&qcoeff[i * 64], &data[i * 64], iQuant, pParam->m_quant_type); -static __inline void -MBTrans16to8(const MBParam * const pParam, - const FRAMEINFO * const frame, - const MACROBLOCK * const pMB, - const uint32_t x_pos, - const uint32_t y_pos, - int16_t data[6 * 64], - const uint32_t add, /* Must be 1 or 0 */ - const uint8_t cbp) -{ - uint8_t *pY_Cur, *pU_Cur, *pV_Cur; - uint32_t stride = pParam->edged_width; - uint32_t stride2 = stride / 2; - uint32_t next_block = stride * 8; - uint32_t cst; - int vop_reduced; - const IMAGE * const pCurrent = &frame->image; + if(frame->global_flags & XVID_CARTOON_MODE) { + limit *= 3; + } - /* Array of function pointers, indexed by [vop_reduced<<1+add] */ - transfer_operation_16to8_t * const functions[4] = - { - (transfer_operation_16to8_t*)transfer_16to8copy, - (transfer_operation_16to8_t*)transfer_16to8add, - (transfer_operation_16to8_t*)copy_upsampled_8x8_16to8, - (transfer_operation_16to8_t*)add_upsampled_8x8_16to8 - }; + if (sum >= limit) { + + start_timer(); + if (pParam->m_quant_type == H263_QUANT) + dequant_inter(&data[i * 64], &qcoeff[i * 64], iQuant); + else + dequant4_inter(&data[i * 64], &qcoeff[i * 64], iQuant); + stop_iquant_timer(); + + cbp |= 1 << (5 - i); - transfer_operation_16to8_t *transfer_op = NULL; + start_timer(); + idct(&data[i * 64]); + stop_idct_timer(); + } + } if (pMB->field_dct) { next_block = stride; stride *= 2; } - /* Makes this vars booleans */ - vop_reduced = !!(frame->vop_flags & XVID_VOP_REDUCED); - - /* Image pointers */ - pY_Cur = pCurrent->y + (y_pos << (4+vop_reduced)) * stride + (x_pos << (4+vop_reduced)); - pU_Cur = pCurrent->u + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced)); - pV_Cur = pCurrent->v + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced)); - - /* Block size */ - cst = 8<global_flags & XVID_REDUCED)) { + if (cbp & 32) + add_upsampled_8x8_16to8(pY_Cur, &data[0 * 64], stride); + if (cbp & 16) + add_upsampled_8x8_16to8(pY_Cur + 16, &data[1 * 64], stride); + if (cbp & 8) + add_upsampled_8x8_16to8(pY_Cur + next_block, &data[2 * 64], stride); + if (cbp & 4) + add_upsampled_8x8_16to8(pY_Cur + 16 + next_block, &data[3 * 64], stride); + if (cbp & 2) + add_upsampled_8x8_16to8(pU_Cur, &data[4 * 64], stride2); + if (cbp & 1) + add_upsampled_8x8_16to8(pV_Cur, &data[5 * 64], stride2); + } else { + if (cbp & 32) + transfer_16to8add(pY_Cur, &data[0 * 64], stride); + if (cbp & 16) + transfer_16to8add(pY_Cur + 8, &data[1 * 64], stride); + if (cbp & 8) + transfer_16to8add(pY_Cur + next_block, &data[2 * 64], stride); + if (cbp & 4) + transfer_16to8add(pY_Cur + next_block + 8, &data[3 * 64], stride); + if (cbp & 2) + transfer_16to8add(pU_Cur, &data[4 * 64], stride2); + if (cbp & 1) + transfer_16to8add(pV_Cur, &data[5 * 64], stride2); + } stop_transfer_timer(); -} - -/***************************************************************************** - * Module functions - ****************************************************************************/ - -void -MBTransQuantIntra(const MBParam * const pParam, - const FRAMEINFO * const frame, - MACROBLOCK * const pMB, - const uint32_t x_pos, - const uint32_t y_pos, - int16_t data[6 * 64], - int16_t qcoeff[6 * 64]) -{ - - /* Transfer data */ - MBTrans8to16(pParam, frame, pMB, x_pos, y_pos, data); - - /* Perform DCT (and field decision) */ - MBfDCT(pParam, frame, pMB, x_pos, y_pos, data); - - /* Quantize the block */ - MBQuantIntra(pParam, frame, pMB, data, qcoeff); - - /* DeQuantize the block */ - MBDeQuantIntra(pParam, pMB->quant, data, qcoeff); - - /* Perform inverse DCT*/ - MBiDCT(data, 0x3F); - /* Transfer back the data -- Don't add data */ - MBTrans16to8(pParam, frame, pMB, x_pos, y_pos, data, 0, 0x3F); + return (uint8_t) cbp; } - uint8_t -MBTransQuantInter(const MBParam * const pParam, - const FRAMEINFO * const frame, - MACROBLOCK * const pMB, - const uint32_t x_pos, - const uint32_t y_pos, +MBTransQuantInterBVOP(const MBParam * pParam, + FRAMEINFO * frame, + MACROBLOCK * pMB, int16_t data[6 * 64], int16_t qcoeff[6 * 64]) { - uint8_t cbp; - uint32_t limit; - - /* There is no MBTrans8to16 for Inter block, that's done in motion compensation - * already */ + int cbp = 0; + int i; - /* Perform DCT (and field decision) */ - MBfDCT(pParam, frame, pMB, x_pos, y_pos, data); +/* there is no MBTrans for Inter block, that's done in motion compensation already */ - /* Set the limit threshold */ - limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0); + start_timer(); + pMB->field_dct = 0; + if ((frame->global_flags & XVID_INTERLACING)) { + pMB->field_dct = MBDecideFieldDCT(data); + } + stop_interlacing_timer(); - if (frame->vop_flags & XVID_VOP_CARTOON) - limit *= 3; + MBfDCT(data); - /* Quantize the block */ - cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit); + for (i = 0; i < 6; i++) { + int codedecision = 0; + + int sum = QuantizeInterBlock(&qcoeff[i * 64], &data[i * 64], pMB->quant, pParam->m_quant_type); - /* DeQuantize the block */ - MBDeQuantInter(pParam, pMB->quant, data, qcoeff, cbp); + if(frame->global_flags & XVID_CARTOON_MODE) { + limit *= 2; + } - /* Perform inverse DCT*/ - MBiDCT(data, cbp); + if ((sum > 2) || (qcoeff[i*64+1] != 0) || (qcoeff[i*64+8] != 0) ) codedecision = 1; + else { + if (pMB->mode == MODE_DIRECT || pMB->mode == MODE_DIRECT_NO4V) { + // dark blocks prevention for direct mode + if ( (qcoeff[i*64] < -1) || (qcoeff[i*64] > 0) ) codedecision = 1; + } else + if (qcoeff[i*64] != 0) codedecision = 1; // not direct mode + } - /* Transfer back the data -- Add the data */ - MBTrans16to8(pParam, frame, pMB, x_pos, y_pos, data, 1, cbp); + if (codedecision) cbp |= 1 << (5 - i); + } - return(cbp); +/* we don't have to DeQuant, iDCT and Transfer back data for B-frames if we don't reconstruct this frame */ +/* warning: reconstruction not supported yet */ + return (uint8_t) cbp; } -uint8_t -MBTransQuantInterBVOP(const MBParam * pParam, - FRAMEINFO * frame, - MACROBLOCK * pMB, - const uint32_t x_pos, - const uint32_t y_pos, - int16_t data[6 * 64], - int16_t qcoeff[6 * 64]) -{ - uint8_t cbp; - uint32_t limit; - - /* There is no MBTrans8to16 for Inter block, that's done in motion compensation - * already */ - - /* Perform DCT (and field decision) */ - MBfDCT(pParam, frame, pMB, x_pos, y_pos, data); - - /* Set the limit threshold */ - limit = BVOP_TOOSMALL_LIMIT; - - if (frame->vop_flags & XVID_VOP_CARTOON) - limit *= 2; - - /* Quantize the block */ - cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit); - - /* - * History comment: - * We don't have to DeQuant, iDCT and Transfer back data for B-frames. - * - * BUT some plugins require the rebuilt original frame to be passed so we - * have to take care of that here - */ - if((pParam->plugin_flags & XVID_REQORIGINAL)) { - - /* DeQuantize the block */ - MBDeQuantInter(pParam, pMB->quant, data, qcoeff, cbp); - - /* Perform inverse DCT*/ - MBiDCT(data, cbp); +/* permute block and return field dct choice */ - /* Transfer back the data -- Add the data */ - MBTrans16to8(pParam, frame, pMB, x_pos, y_pos, data, 1, cbp); - } +static uint32_t +MBDecideFieldDCT(int16_t data[6 * 64]) +{ + const uint32_t field = MBFieldTest(data); + if (field) MBFrameToField(data); - return(cbp); + return field; } /* if sum(diff between field lines) < sum(diff between frame lines), use field dct */ + uint32_t MBFieldTest_c(int16_t data[6 * 64]) { @@ -535,25 +397,25 @@ for (i = 0; i < 7; ++i) { for (j = 0; j < 8; ++j) { frame += - abs(data[0 * 64 + (i + 1) * 8 + j] - data[0 * 64 + i * 8 + j]); + ABS(data[0 * 64 + (i + 1) * 8 + j] - data[0 * 64 + i * 8 + j]); frame += - abs(data[1 * 64 + (i + 1) * 8 + j] - data[1 * 64 + i * 8 + j]); + ABS(data[1 * 64 + (i + 1) * 8 + j] - data[1 * 64 + i * 8 + j]); frame += - abs(data[2 * 64 + (i + 1) * 8 + j] - data[2 * 64 + i * 8 + j]); + ABS(data[2 * 64 + (i + 1) * 8 + j] - data[2 * 64 + i * 8 + j]); frame += - abs(data[3 * 64 + (i + 1) * 8 + j] - data[3 * 64 + i * 8 + j]); + ABS(data[3 * 64 + (i + 1) * 8 + j] - data[3 * 64 + i * 8 + j]); field += - abs(data[blocks[i + 1] + lines[i + 1] + j] - + ABS(data[blocks[i + 1] + lines[i + 1] + j] - data[blocks[i] + lines[i] + j]); field += - abs(data[blocks[i + 1] + lines[i + 1] + 8 + j] - + ABS(data[blocks[i + 1] + lines[i + 1] + 8 + j] - data[blocks[i] + lines[i] + 8 + j]); field += - abs(data[blocks[i + 1] + 64 + lines[i + 1] + j] - + ABS(data[blocks[i + 1] + 64 + lines[i + 1] + j] - data[blocks[i] + 64 + lines[i] + j]); field += - abs(data[blocks[i + 1] + 64 + lines[i + 1] + 8 + j] - + ABS(data[blocks[i + 1] + 64 + lines[i + 1] + 8 + j] - data[blocks[i] + 64 + lines[i] + 8 + j]); } } @@ -565,7 +427,7 @@ /* deinterlace Y blocks vertically */ #define MOVLINE(X,Y) memcpy(X, Y, sizeof(tmp)) -#define LINE(X,Y) &data[X*64 + Y*8] +#define LINE(X,Y) &data[X*64 + Y*8] void MBFrameToField(int16_t data[6 * 64]) @@ -574,26 +436,26 @@ /* left blocks */ - /* 1=2, 2=4, 4=8, 8=1 */ + // 1=2, 2=4, 4=8, 8=1 MOVLINE(tmp, LINE(0, 1)); MOVLINE(LINE(0, 1), LINE(0, 2)); MOVLINE(LINE(0, 2), LINE(0, 4)); MOVLINE(LINE(0, 4), LINE(2, 0)); MOVLINE(LINE(2, 0), tmp); - /* 3=6, 6=12, 12=9, 9=3 */ + // 3=6, 6=12, 12=9, 9=3 MOVLINE(tmp, LINE(0, 3)); MOVLINE(LINE(0, 3), LINE(0, 6)); MOVLINE(LINE(0, 6), LINE(2, 4)); MOVLINE(LINE(2, 4), LINE(2, 1)); MOVLINE(LINE(2, 1), tmp); - /* 5=10, 10=5 */ + // 5=10, 10=5 MOVLINE(tmp, LINE(0, 5)); MOVLINE(LINE(0, 5), LINE(2, 2)); MOVLINE(LINE(2, 2), tmp); - /* 7=14, 14=13, 13=11, 11=7 */ + // 7=14, 14=13, 13=11, 11=7 MOVLINE(tmp, LINE(0, 7)); MOVLINE(LINE(0, 7), LINE(2, 6)); MOVLINE(LINE(2, 6), LINE(2, 5)); @@ -602,735 +464,29 @@ /* right blocks */ - /* 1=2, 2=4, 4=8, 8=1 */ + // 1=2, 2=4, 4=8, 8=1 MOVLINE(tmp, LINE(1, 1)); MOVLINE(LINE(1, 1), LINE(1, 2)); MOVLINE(LINE(1, 2), LINE(1, 4)); MOVLINE(LINE(1, 4), LINE(3, 0)); MOVLINE(LINE(3, 0), tmp); - /* 3=6, 6=12, 12=9, 9=3 */ + // 3=6, 6=12, 12=9, 9=3 MOVLINE(tmp, LINE(1, 3)); MOVLINE(LINE(1, 3), LINE(1, 6)); MOVLINE(LINE(1, 6), LINE(3, 4)); MOVLINE(LINE(3, 4), LINE(3, 1)); MOVLINE(LINE(3, 1), tmp); - /* 5=10, 10=5 */ + // 5=10, 10=5 MOVLINE(tmp, LINE(1, 5)); MOVLINE(LINE(1, 5), LINE(3, 2)); MOVLINE(LINE(3, 2), tmp); - /* 7=14, 14=13, 13=11, 11=7 */ + // 7=14, 14=13, 13=11, 11=7 MOVLINE(tmp, LINE(1, 7)); MOVLINE(LINE(1, 7), LINE(3, 6)); MOVLINE(LINE(3, 6), LINE(3, 5)); MOVLINE(LINE(3, 5), LINE(3, 3)); MOVLINE(LINE(3, 3), tmp); } - -/***************************************************************************** - * Trellis based R-D optimal quantization - * - * Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net - * - ****************************************************************************/ - -/*---------------------------------------------------------------------------- - * - * Trellis-Based quantization - * - * So far I understand this paper: - * - * "Trellis-Based R-D Optimal Quantization in H.263+" - * J.Wen, M.Luttrell, J.Villasenor - * IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000. - * - * we are at stake with a simplified Bellmand-Ford / Dijkstra Single - * Source Shortest Path algo. But due to the underlying graph structure - * ("Trellis"), it can be turned into a dynamic programming algo, - * partially saving the explicit graph's nodes representation. And - * without using a heap, since the open frontier of the DAG is always - * known, and of fixed size. - *--------------------------------------------------------------------------*/ - - - -/* Codes lengths for relevant levels. */ - -/* let's factorize: */ -static const uint8_t Code_Len0[64] = { - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len1[64] = { - 20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len2[64] = { - 19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len3[64] = { - 18,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len4[64] = { - 17,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len5[64] = { - 16,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len6[64] = { - 15,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len7[64] = { - 13,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len8[64] = { - 11,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len9[64] = { - 12,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len10[64] = { - 12,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len11[64] = { - 12,19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len12[64] = { - 11,17,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len13[64] = { - 11,15,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len14[64] = { - 10,12,19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len15[64] = { - 10,13,17,19,21,21,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len16[64] = { - 9,12,13,18,18,19,19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; -static const uint8_t Code_Len17[64] = { - 8,11,13,14,14,14,15,19,19,19,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len18[64] = { - 7, 9,11,11,13,13,13,15,15,15,16,22,22,22,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len19[64] = { - 5, 7, 9,10,10,11,11,11,11,11,13,14,16,17,17,18,18,18,18,18,18,18,18,20,20,21,21,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; -static const uint8_t Code_Len20[64] = { - 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15, - 15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 }; - -/* a few more table for LAST table: */ -static const uint8_t Code_Len21[64] = { - 13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; -static const uint8_t Code_Len22[64] = { - 12,15,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, - 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; -static const uint8_t Code_Len23[64] = { - 10,12,15,15,15,16,16,16,16,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,20,20,20, - 20,21,21,21,21,21,21,21,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; -static const uint8_t Code_Len24[64] = { - 5, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,11,11,11,11,12,12,12, - 12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19}; - - -static const uint8_t * const B16_17_Code_Len[24] = { /* levels [1..24] */ - Code_Len20,Code_Len19,Code_Len18,Code_Len17, - Code_Len16,Code_Len15,Code_Len14,Code_Len13, - Code_Len12,Code_Len11,Code_Len10,Code_Len9, - Code_Len8, Code_Len7 ,Code_Len6 ,Code_Len5, - Code_Len4, Code_Len3, Code_Len3 ,Code_Len2, - Code_Len2, Code_Len1, Code_Len1, Code_Len1, -}; - -static const uint8_t * const B16_17_Code_Len_Last[6] = { /* levels [1..6] */ - Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1, -}; - -/* TL_SHIFT controls the precision of the RD optimizations in trellis - * valid range is [10..16]. The bigger, the more trellis is vulnerable - * to overflows in cost formulas. - * - 10 allows ac values up to 2^11 == 2048 - * - 16 allows ac values up to 2^8 == 256 - */ -#define TL_SHIFT 11 -#define TL(q) ((0xfe00>>(16-TL_SHIFT))/(q*q)) - -static const int Trellis_Lambda_Tabs[31] = { - TL( 1),TL( 2),TL( 3),TL( 4),TL( 5),TL( 6), TL( 7), - TL( 8),TL( 9),TL(10),TL(11),TL(12),TL(13),TL(14), TL(15), - TL(16),TL(17),TL(18),TL(19),TL(20),TL(21),TL(22), TL(23), - TL(24),TL(25),TL(26),TL(27),TL(28),TL(29),TL(30), TL(31) -}; -#undef TL - -static int __inline -Find_Last(const int16_t *C, const uint16_t *Zigzag, int i) -{ - while(i>=0) - if (C[Zigzag[i]]) - return i; - else i--; - return -1; -} - -static int __inline -Compute_Sum(const int16_t *C, int last) -{ - int sum = 0; - - while(last--) - sum += abs(C[last]); - - return(sum); -} - -/* this routine has been strippen of all debug code */ -static int -dct_quantize_trellis_c(int16_t *const Out, - const int16_t *const In, - int Q, - const uint16_t * const Zigzag, - const uint16_t * const QuantMatrix, - int Non_Zero) -{ - - /* Note: We should search last non-zero coeffs on *real* DCT input coeffs - * (In[]), not quantized one (Out[]). However, it only improves the result - * *very* slightly (~0.01dB), whereas speed drops to crawling level :) - * Well, actually, taking 1 more coeff past Non_Zero into account sometimes - * helps. */ - typedef struct { int16_t Run, Level; } NODE; - - NODE Nodes[65], Last; - uint32_t Run_Costs0[64+1]; - uint32_t * const Run_Costs = Run_Costs0 + 1; - - /* it's 1/lambda, actually */ - const int Lambda = Trellis_Lambda_Tabs[Q-1]; - - int Run_Start = -1; - uint32_t Min_Cost = 2<>4); - const int Mult = 2*q; - const int Bias = (q-1) | 1; - const int Lev0 = Mult + Bias; - - const int AC = In[Zigzag[i]]; - const int Level1 = Out[Zigzag[i]]; - const unsigned int Dist0 = Lambda* AC*AC; - uint32_t Best_Cost = 0xf0000000; - Last_Cost += Dist0; - - /* very specialized loop for -1,0,+1 */ - if ((uint32_t)(Level1+1)<3) { - int dQ; - int Run; - uint32_t Cost0; - - if (AC<0) { - Nodes[i].Level = -1; - dQ = Lev0 + AC; - } else { - Nodes[i].Level = 1; - dQ = Lev0 - AC; - } - Cost0 = Lambda*dQ*dQ; - - Nodes[i].Run = 1; - Best_Cost = (Code_Len20[0]<0; --Run) { - const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run]; - const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]< hifreq errors (HVS) */ - - if (Cost(uint32_t)(Level1+25)) { - /* "big" levels (not less than ESC3, though) */ - const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last; - int Level2; - int dQ1, dQ2; - int Run; - uint32_t Dist1,Dist2; - int dDist21; - - if (Level1>1) { - dQ1 = Level1*Mult-AC + Bias; - dQ2 = dQ1 - Mult; - Level2 = Level1-1; - Tbl_L1 = (Level1<=24) ? B16_17_Code_Len[Level1-1] : Code_Len0; - Tbl_L2 = (Level2<=24) ? B16_17_Code_Len[Level2-1] : Code_Len0; - Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0; - Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0; - } else { /* Level1<-1 */ - dQ1 = Level1*Mult-AC - Bias; - dQ2 = dQ1 + Mult; - Level2 = Level1 + 1; - Tbl_L1 = (Level1>=-24) ? B16_17_Code_Len[Level1^-1] : Code_Len0; - Tbl_L2 = (Level2>=-24) ? B16_17_Code_Len[Level2^-1] : Code_Len0; - Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0; - Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0; - } - - Dist1 = Lambda*dQ1*dQ1; - Dist2 = Lambda*dQ2*dQ2; - dDist21 = Dist2-Dist1; - - for(Run=i-Run_Start; Run>0; --Run) - { - const uint32_t Cost_Base = Dist1 + Run_Costs[i-Run]; - uint32_t Cost1, Cost2; - int bLevel; - - /* for sub-optimal (but slightly worth it, speed-wise) search, - * uncomment the following: - * if (Cost_Base>=Best_Cost) continue; - * (? doesn't seem to have any effect -- gruel ) */ - - Cost1 = Cost_Base + (Tbl_L1[Run-1]< Simply pick best Run. */ - int Run; - for(Run=i-Run_Start; Run>0; --Run) { - /* 30 bits + no distortion */ - const uint32_t Cost = (30<Min_Cost+(1<=0) { - Out[Zigzag[i]] = Nodes[i].Level; - sum += abs(Nodes[i].Level); - i -= Nodes[i].Run; - } - - return sum; -} - -/* original version including heavy debugging info */ - -#ifdef DBGTRELL - -#define DBG 0 - -static __inline uint32_t Evaluate_Cost(const int16_t *C, int Mult, int Bias, - const uint16_t * Zigzag, int Max, int Lambda) -{ -#if (DBG>0) - const int16_t * const Ref = C + 6*64; - int Last = Max; - int Bits = 0; - int Dist = 0; - int i; - uint32_t Cost; - - while(Last>=0 && C[Zigzag[Last]]==0) - Last--; - - if (Last>=0) { - int j=0, j0=0; - int Run, Level; - - Bits = 2; /* CBP */ - while(j=-24 && Level<=24) - Bits += B16_17_Code_Len[(Level<0) ? -Level-1 : Level-1][Run]; - else - Bits += 30; - } - Level = C[Zigzag[Last]]; - Run = j - j0; - if (Level>=-6 && Level<=6) - Bits += B16_17_Code_Len_Last[(Level<0) ? -Level-1 : Level-1][Run]; - else - Bits += 30; - } - - for(i=0; i<=Last; ++i) { - int V = C[Zigzag[i]]*Mult; - if (V>0) - V += Bias; - else - if (V<0) - V -= Bias; - V -= Ref[Zigzag[i]]; - Dist += V*V; - } - Cost = Lambda*Dist + (Bits<>12= %d ", Last,Max, Bits, Dist, Cost, Cost>>12 ); - return Cost; - -#else - return 0; -#endif -} - - -static int -dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero) -{ - - /* - * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]), - * not quantized one (Out[]). However, it only improves the result *very* - * slightly (~0.01dB), whereas speed drops to crawling level :) - * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps. - */ - typedef struct { int16_t Run, Level; } NODE; - - NODE Nodes[65], Last; - uint32_t Run_Costs0[64+1]; - uint32_t * const Run_Costs = Run_Costs0 + 1; - const int Mult = 2*Q; - const int Bias = (Q-1) | 1; - const int Lev0 = Mult + Bias; - const int Lambda = Trellis_Lambda_Tabs[Q-1]; /* it's 1/lambda, actually */ - - int Run_Start = -1; - Run_Costs[-1] = 2<0) - Last.Level = 0; Last.Run = -1; /* just initialize to smthg */ -#endif - - Non_Zero = Find_Last(Out, Zigzag, Non_Zero); - if (Non_Zero<0) - return -1; - - for(i=0; i<=Non_Zero; i++) - { - const int AC = In[Zigzag[i]]; - const int Level1 = Out[Zigzag[i]]; - const int Dist0 = Lambda* AC*AC; - uint32_t Best_Cost = 0xf0000000; - Last_Cost += Dist0; - - if ((uint32_t)(Level1+1)<3) /* very specialized loop for -1,0,+1 */ - { - int dQ; - int Run; - uint32_t Cost0; - - if (AC<0) { - Nodes[i].Level = -1; - dQ = Lev0 + AC; - } else { - Nodes[i].Level = 1; - dQ = Lev0 - AC; - } - Cost0 = Lambda*dQ*dQ; - - Nodes[i].Run = 1; - Best_Cost = (Code_Len20[0]<0; --Run) - { - const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run]; - const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<>12 ); - else if (j>Run_Start && j>12 ); - else if (j==i) printf( "(%3.0d)", Run_Costs[j]>>12 ); - else printf( " - |" ); - } - printf( "<%3.0d %2d %d>", Min_Cost>>12, Nodes[i].Level, Nodes[i].Run ); - printf( " Last:#%2d {%3.0d %2d %d}", Last_Node, Last_Cost>>12, Last.Level, Last.Run ); - printf( " AC:%3.0d Dist0:%3d Dist(%d)=%d", AC, Dist0>>12, Nodes[i].Level, Cost0>>12 ); - printf( "\n" ); - } - } - else /* "big" levels */ - { - const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last; - int Level2; - int dQ1, dQ2; - int Run; - uint32_t Dist1,Dist2; - int dDist21; - - if (Level1>1) { - dQ1 = Level1*Mult-AC + Bias; - dQ2 = dQ1 - Mult; - Level2 = Level1-1; - Tbl_L1 = (Level1<=24) ? B16_17_Code_Len[Level1-1] : Code_Len0; - Tbl_L2 = (Level2<=24) ? B16_17_Code_Len[Level2-1] : Code_Len0; - Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0; - Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0; - } else { /* Level1<-1 */ - dQ1 = Level1*Mult-AC - Bias; - dQ2 = dQ1 + Mult; - Level2 = Level1 + 1; - Tbl_L1 = (Level1>=-24) ? B16_17_Code_Len[Level1^-1] : Code_Len0; - Tbl_L2 = (Level2>=-24) ? B16_17_Code_Len[Level2^-1] : Code_Len0; - Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0; - Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0; - } - Dist1 = Lambda*dQ1*dQ1; - Dist2 = Lambda*dQ2*dQ2; - dDist21 = Dist2-Dist1; - - for(Run=i-Run_Start; Run>0; --Run) - { - const uint32_t Cost_Base = Dist1 + Run_Costs[i-Run]; - uint32_t Cost1, Cost2; - int bLevel; - -/* - * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following: - * if (Cost_Base>=Best_Cost) continue; - */ - Cost1 = Cost_Base + (Tbl_L1[Run-1]<>12 ); - else if (j>Run_Start && j>12 ); - else if (j==i) printf( "(%3.0d)", Run_Costs[j]>>12 ); - else printf( " - |" ); - } - printf( "<%3.0d %2d %d>", Min_Cost>>12, Nodes[i].Level, Nodes[i].Run ); - printf( " Last:#%2d {%3.0d %2d %d}", Last_Node, Last_Cost>>12, Last.Level, Last.Run ); - printf( " AC:%3.0d Dist0:%3d Dist(%2d):%3d Dist(%2d):%3d", AC, Dist0>>12, Level1, Dist1>>12, Level2, Dist2>>12 ); - printf( "\n" ); - } - } - - Run_Costs[i] = Best_Cost; - - if (Best_Cost < Min_Cost + Dist0) { - Min_Cost = Best_Cost; - Run_Start = i; - } - else - { - /* - * as noticed by Michael Niedermayer (michaelni at gmx.at), there's - * a code shorter by 1 bit for a larger run (!), same level. We give - * it a chance by not moving the left barrier too much. - */ - - while( Run_Costs[Run_Start]>Min_Cost+(1< " ); - for(i=0; i<=Non_Zero; ++i) printf( "[%3.0d] ", Out[Zigzag[i]] ); - printf( "\n" ); - } - } - - if (Last_Node<0) - return -1; - - /* reconstruct optimal sequence backward with surviving paths */ - memset(Out, 0x00, 64*sizeof(*Out)); - Out[Zigzag[Last_Node]] = Last.Level; - i = Last_Node - Last.Run; - while(i>=0) { - Out[Zigzag[i]] = Nodes[i].Level; - i -= Nodes[i].Run; - } - - if (DBG) { - uint32_t Cost = Evaluate_Cost(Out,Mult,Bias, Zigzag,Non_Zero, Lambda); - if (DBG==1) { - printf( "<= " ); - for(i=0; i<=Last_Node; ++i) printf( "[%3.0d] ", Out[Zigzag[i]] ); - printf( "\n--------------------------------\n" ); - } - if (Cost>Last_Cost) printf( "!!! %u > %u\n", Cost, Last_Cost ); - } - return Last_Node; -} - -#undef DBG - -#endif