--- mbtransquant.c 2002/04/13 16:30:02 1.5 +++ mbtransquant.c 2005/05/23 09:29:43 1.28 @@ -1,56 +1,32 @@ - /****************************************************************************** - * * - * This file is part of XviD, a free MPEG-4 video encoder/decoder * - * * - * XviD is an implementation of a part of one or more MPEG-4 Video tools * - * as specified in ISO/IEC 14496-2 standard. Those intending to use this * - * software module in hardware or software products are advised that its * - * use may infringe existing patents or copyrights, and any such use * - * would be at such party's own risk. The original developer of this * - * software module and his/her company, and subsequent editors and their * - * companies, will have no liability for use of this software or * - * modifications or derivatives thereof. * - * * - * XviD is free software; you can redistribute it and/or modify it * - * under the terms of the GNU General Public License as published by * - * the Free Software Foundation; either version 2 of the License, or * - * (at your option) any later version. * - * * - * XviD is distributed in the hope that it will be useful, but * - * WITHOUT ANY WARRANTY; without even the implied warranty of * - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * - * GNU General Public License for more details. * - * * - * You should have received a copy of the GNU General Public License * - * along with this program; if not, write to the Free Software * - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * - * * - ******************************************************************************/ - - /****************************************************************************** - * * - * mbtransquant.c * - * * - * Copyright (C) 2001 - Peter Ross * - * Copyright (C) 2001 - Michael Militzer * - * * - * For more information visit the XviD homepage: http://www.xvid.org * - * * - ******************************************************************************/ - - /****************************************************************************** - * * - * Revision history: * - * * - * 29.03.2002 interlacing speedup - used transfer strides instead of - * manual field-to-frame conversion - * 26.03.2002 interlacing support - moved transfers outside loops - * 22.12.2001 get_dc_scaler() moved to common.h - * 19.11.2001 introduced coefficient thresholding (Isibaar) * - * 17.11.2001 initial version * - * * - ******************************************************************************/ +/***************************************************************************** + * + * XVID MPEG-4 VIDEO CODEC + * - MB Transfert/Quantization functions - + * + * Copyright(C) 2001-2003 Peter Ross + * 2001-2003 Michael Militzer + * 2003 Edouard Gomez + * + * This program is free software ; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation ; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY ; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program ; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * $Id: mbtransquant.c,v 1.28 2005/05/23 09:29:43 Skal Exp $ + * + ****************************************************************************/ +#include +#include #include #include "../portab.h" @@ -59,314 +35,1270 @@ #include "../global.h" #include "mem_transfer.h" #include "timer.h" +#include "../bitstream/mbcoding.h" +#include "../bitstream/zigzag.h" #include "../dct/fdct.h" #include "../dct/idct.h" -#include "../quant/quant_mpeg4.h" -#include "../quant/quant_h263.h" +#include "../quant/quant.h" #include "../encoder.h" -#define MIN(X, Y) ((X)<(Y)?(X):(Y)) -#define MAX(X, Y) ((X)>(Y)?(X):(Y)) +#include "../quant/quant_matrix.h" -#define TOOSMALL_LIMIT 1 /* skip blocks having a coefficient sum below this value */ +MBFIELDTEST_PTR MBFieldTest; -/* this isnt pretty, but its better than 20 ifdefs */ - -void MBTransQuantIntra(const MBParam *pParam, - MACROBLOCK * pMB, - const uint32_t x_pos, - const uint32_t y_pos, - int16_t data[6*64], - int16_t qcoeff[6*64], - IMAGE * const pCurrent) - +/* + * Skip blocks having a coefficient sum below this value. This value will be + * corrected according to the MB quantizer to avoid artifacts for quant==1 + */ +#define PVOP_TOOSMALL_LIMIT 1 +#define BVOP_TOOSMALL_LIMIT 3 + +/***************************************************************************** + * Local functions + ****************************************************************************/ + +/* permute block and return field dct choice */ +static __inline uint32_t +MBDecideFieldDCT(int16_t data[6 * 64]) { + uint32_t field = MBFieldTest(data); - uint32_t stride = pParam->edged_width; - uint32_t stride2 = stride / 2; - uint32_t next_block = stride * 8; - uint32_t i; - uint32_t iQuant = pParam->quant; - uint8_t *pY_Cur, *pU_Cur, *pV_Cur; - - pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); - pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); - pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); + if (field) + MBFrameToField(data); - start_timer(); - transfer_8to16copy(&data[0*64], pY_Cur, stride); - transfer_8to16copy(&data[1*64], pY_Cur + 8, stride); - transfer_8to16copy(&data[2*64], pY_Cur + next_block, stride); - transfer_8to16copy(&data[3*64], pY_Cur + next_block + 8,stride); - transfer_8to16copy(&data[4*64], pU_Cur, stride2); - transfer_8to16copy(&data[5*64], pV_Cur, stride2); - stop_transfer_timer(); + return field; +} +/* Performs Forward DCT on all blocks */ +static __inline void +MBfDCT(const MBParam * const pParam, + const FRAMEINFO * const frame, + MACROBLOCK * const pMB, + uint32_t x_pos, + uint32_t y_pos, + int16_t data[6 * 64]) +{ + /* Handles interlacing */ start_timer(); pMB->field_dct = 0; - if (pParam->global_flags & XVID_INTERLACING) - { + if ((frame->vol_flags & XVID_VOL_INTERLACING) && + (x_pos>0) && (x_posmb_width-1) && + (y_pos>0) && (y_posmb_height-1)) { pMB->field_dct = MBDecideFieldDCT(data); } stop_interlacing_timer(); - for(i = 0; i < 6; i++) - { - uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4); + /* Perform DCT */ + start_timer(); + fdct(&data[0 * 64]); + fdct(&data[1 * 64]); + fdct(&data[2 * 64]); + fdct(&data[3 * 64]); + fdct(&data[4 * 64]); + fdct(&data[5 * 64]); + stop_dct_timer(); +} - start_timer(); - fdct(&data[i*64]); - stop_dct_timer(); +/* Performs Inverse DCT on all blocks */ +static __inline void +MBiDCT(int16_t data[6 * 64], + const uint8_t cbp) +{ + start_timer(); + if(cbp & (1 << (5 - 0))) idct(&data[0 * 64]); + if(cbp & (1 << (5 - 1))) idct(&data[1 * 64]); + if(cbp & (1 << (5 - 2))) idct(&data[2 * 64]); + if(cbp & (1 << (5 - 3))) idct(&data[3 * 64]); + if(cbp & (1 << (5 - 4))) idct(&data[4 * 64]); + if(cbp & (1 << (5 - 5))) idct(&data[5 * 64]); + stop_idct_timer(); +} + +/* Quantize all blocks -- Intra mode */ +static __inline void +MBQuantIntra(const MBParam * pParam, + const FRAMEINFO * const frame, + const MACROBLOCK * pMB, + int16_t qcoeff[6 * 64], + int16_t data[6*64]) +{ + int mpeg; + int scaler_lum, scaler_chr; - if (pParam->quant_type == H263_QUANT) + quant_intraFuncPtr const quant[2] = { - start_timer(); - quant_intra(&qcoeff[i*64], &data[i*64], iQuant, iDcScaler); - stop_quant_timer(); - - start_timer(); - dequant_intra(&data[i*64], &qcoeff[i*64], iQuant, iDcScaler); - stop_iquant_timer(); - } - else + quant_h263_intra, + quant_mpeg_intra + }; + + mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); + scaler_lum = get_dc_scaler(pMB->quant, 1); + scaler_chr = get_dc_scaler(pMB->quant, 0); + + /* Quantize the block */ + start_timer(); + quant[mpeg](&data[0 * 64], &qcoeff[0 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices); + quant[mpeg](&data[1 * 64], &qcoeff[1 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices); + quant[mpeg](&data[2 * 64], &qcoeff[2 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices); + quant[mpeg](&data[3 * 64], &qcoeff[3 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices); + quant[mpeg](&data[4 * 64], &qcoeff[4 * 64], pMB->quant, scaler_chr, pParam->mpeg_quant_matrices); + quant[mpeg](&data[5 * 64], &qcoeff[5 * 64], pMB->quant, scaler_chr, pParam->mpeg_quant_matrices); + stop_quant_timer(); +} + +/* DeQuantize all blocks -- Intra mode */ +static __inline void +MBDeQuantIntra(const MBParam * pParam, + const int iQuant, + int16_t qcoeff[6 * 64], + int16_t data[6*64]) +{ + int mpeg; + int scaler_lum, scaler_chr; + + quant_intraFuncPtr const dequant[2] = { - start_timer(); - quant4_intra(&qcoeff[i*64], &data[i*64], iQuant, iDcScaler); - stop_quant_timer(); - - start_timer(); - dequant4_intra(&data[i*64], &qcoeff[i*64], iQuant, iDcScaler); - stop_iquant_timer(); - } + dequant_h263_intra, + dequant_mpeg_intra + }; + + mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); + scaler_lum = get_dc_scaler(iQuant, 1); + scaler_chr = get_dc_scaler(iQuant, 0); + + start_timer(); + dequant[mpeg](&qcoeff[0 * 64], &data[0 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices); + dequant[mpeg](&qcoeff[1 * 64], &data[1 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices); + dequant[mpeg](&qcoeff[2 * 64], &data[2 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices); + dequant[mpeg](&qcoeff[3 * 64], &data[3 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices); + dequant[mpeg](&qcoeff[4 * 64], &data[4 * 64], iQuant, scaler_chr, pParam->mpeg_quant_matrices); + dequant[mpeg](&qcoeff[5 * 64], &data[5 * 64], iQuant, scaler_chr, pParam->mpeg_quant_matrices); + stop_iquant_timer(); +} + +static int +dct_quantize_trellis_c(int16_t *const Out, + const int16_t *const In, + int Q, + const uint16_t * const Zigzag, + const uint16_t * const QuantMatrix, + int Non_Zero, + int Sum); + +/* Quantize all blocks -- Inter mode */ +static __inline uint8_t +MBQuantInter(const MBParam * pParam, + const FRAMEINFO * const frame, + const MACROBLOCK * pMB, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64], + int bvop, + int limit) +{ + + int i; + uint8_t cbp = 0; + int sum; + int code_block, mpeg; + + quant_interFuncPtr const quant[2] = + { + quant_h263_inter, + quant_mpeg_inter + }; + + mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); + + for (i = 0; i < 6; i++) { + /* Quantize the block */ start_timer(); - idct(&data[i*64]); - stop_idct_timer(); - } - if (pMB->field_dct) - { - next_block = stride; - stride *= 2; + sum = quant[mpeg](&qcoeff[i*64], &data[i*64], pMB->quant, pParam->mpeg_quant_matrices); + + if(sum && (pMB->quant > 2) && (frame->vop_flags & XVID_VOP_TRELLISQUANT)) { + const uint16_t *matrix; + const static uint16_t h263matrix[] = + { + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16, + 16, 16, 16, 16, 16, 16, 16, 16 + }; + + matrix = (mpeg)?get_inter_matrix(pParam->mpeg_quant_matrices):h263matrix; + sum = dct_quantize_trellis_c(&qcoeff[i*64], &data[i*64], + pMB->quant, &scan_tables[0][0], + matrix, + 63, + sum); + } + stop_quant_timer(); + + /* + * We code the block if the sum is higher than the limit and if the first + * two AC coefficients in zig zag order are not zero. + */ + code_block = 0; + if ((sum >= limit) || (qcoeff[i*64+1] != 0) || (qcoeff[i*64+8] != 0)) { + code_block = 1; + } else { + + if (bvop && (pMB->mode == MODE_DIRECT || pMB->mode == MODE_DIRECT_NO4V)) { + /* dark blocks prevention for direct mode */ + if ((qcoeff[i*64] < -1) || (qcoeff[i*64] > 0)) + code_block = 1; + } else { + /* not direct mode */ + if (qcoeff[i*64] != 0) + code_block = 1; + } + } + + /* Set the corresponding cbp bit */ + cbp |= code_block << (5 - i); } - start_timer(); - transfer_16to8copy(pY_Cur, &data[0*64], stride); - transfer_16to8copy(pY_Cur + 8, &data[1*64], stride); - transfer_16to8copy(pY_Cur + next_block, &data[2*64], stride); - transfer_16to8copy(pY_Cur + next_block + 8, &data[3*64], stride); - transfer_16to8copy(pU_Cur, &data[4*64], stride2); - transfer_16to8copy(pV_Cur, &data[5*64], stride2); - stop_transfer_timer(); + return(cbp); +} +/* DeQuantize all blocks -- Inter mode */ +static __inline void +MBDeQuantInter(const MBParam * pParam, + const int iQuant, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64], + const uint8_t cbp) +{ + int mpeg; + + quant_interFuncPtr const dequant[2] = + { + dequant_h263_inter, + dequant_mpeg_inter + }; + + mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT); + + start_timer(); + if(cbp & (1 << (5 - 0))) dequant[mpeg](&data[0 * 64], &qcoeff[0 * 64], iQuant, pParam->mpeg_quant_matrices); + if(cbp & (1 << (5 - 1))) dequant[mpeg](&data[1 * 64], &qcoeff[1 * 64], iQuant, pParam->mpeg_quant_matrices); + if(cbp & (1 << (5 - 2))) dequant[mpeg](&data[2 * 64], &qcoeff[2 * 64], iQuant, pParam->mpeg_quant_matrices); + if(cbp & (1 << (5 - 3))) dequant[mpeg](&data[3 * 64], &qcoeff[3 * 64], iQuant, pParam->mpeg_quant_matrices); + if(cbp & (1 << (5 - 4))) dequant[mpeg](&data[4 * 64], &qcoeff[4 * 64], iQuant, pParam->mpeg_quant_matrices); + if(cbp & (1 << (5 - 5))) dequant[mpeg](&data[5 * 64], &qcoeff[5 * 64], iQuant, pParam->mpeg_quant_matrices); + stop_iquant_timer(); } +typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS); +typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS); -uint8_t MBTransQuantInter(const MBParam *pParam, - MACROBLOCK * pMB, - const uint32_t x_pos, const uint32_t y_pos, - int16_t data[6*64], - int16_t qcoeff[6*64], - IMAGE * const pCurrent) +static __inline void +MBTrans8to16(const MBParam * const pParam, + const FRAMEINFO * const frame, + const MACROBLOCK * const pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64]) { - uint32_t stride = pParam->edged_width; uint32_t stride2 = stride / 2; uint32_t next_block = stride * 8; - uint32_t i; - uint32_t iQuant = pParam->quant; uint8_t *pY_Cur, *pU_Cur, *pV_Cur; - uint8_t cbp = 0; - uint32_t sum; - - pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); + const IMAGE * const pCurrent = &frame->image; + + /* Image pointers */ + pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); + /* Do the transfer */ start_timer(); - pMB->field_dct = 0; - if (pParam->global_flags & XVID_INTERLACING) - { - pMB->field_dct = MBDecideFieldDCT(data); - } - stop_interlacing_timer(); + transfer_8to16copy(&data[0 * 64], pY_Cur, stride); + transfer_8to16copy(&data[1 * 64], pY_Cur + 8, stride); + transfer_8to16copy(&data[2 * 64], pY_Cur + next_block, stride); + transfer_8to16copy(&data[3 * 64], pY_Cur + next_block + 8, stride); + transfer_8to16copy(&data[4 * 64], pU_Cur, stride2); + transfer_8to16copy(&data[5 * 64], pV_Cur, stride2); + stop_transfer_timer(); +} - for(i = 0; i < 6; i++) - { - /* - * no need to transfer 8->16-bit - * (this is performed already in motion compensation) - */ - start_timer(); - fdct(&data[i*64]); - stop_dct_timer(); +static __inline void +MBTrans16to8(const MBParam * const pParam, + const FRAMEINFO * const frame, + const MACROBLOCK * const pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64], + const uint32_t add, /* Must be 1 or 0 */ + const uint8_t cbp) +{ + uint8_t *pY_Cur, *pU_Cur, *pV_Cur; + uint32_t stride = pParam->edged_width; + uint32_t stride2 = stride / 2; + uint32_t next_block = stride * 8; + const IMAGE * const pCurrent = &frame->image; - if (pParam->quant_type == 0) + /* Array of function pointers, indexed by [add] */ + transfer_operation_16to8_t * const functions[2] = { - start_timer(); - sum = quant_inter(&qcoeff[i*64], &data[i*64], iQuant); - stop_quant_timer(); - } - else - { - start_timer(); - sum = quant4_inter(&qcoeff[i*64], &data[i*64], iQuant); - stop_quant_timer(); - } + (transfer_operation_16to8_t*)transfer_16to8copy, + (transfer_operation_16to8_t*)transfer_16to8add, + }; - if(sum >= TOOSMALL_LIMIT) { // skip block ? + transfer_operation_16to8_t *transfer_op = NULL; - if (pParam->quant_type == H263_QUANT) - { - start_timer(); - dequant_inter(&data[i*64], &qcoeff[i*64], iQuant); - stop_iquant_timer(); - } - else - { - start_timer(); - dequant4_inter(&data[i*64], &qcoeff[i*64], iQuant); - stop_iquant_timer(); - } - - cbp |= 1 << (5 - i); - - start_timer(); - idct(&data[i*64]); - stop_idct_timer(); - } - } + /* Image pointers */ + pY_Cur = pCurrent->y + (y_pos << 4) * stride + (x_pos << 4); + pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3); + pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3); - if (pMB->field_dct) - { + if (pMB->field_dct) { next_block = stride; stride *= 2; } + /* Operation function */ + transfer_op = functions[add]; + + /* Do the operation */ start_timer(); - if (cbp & 32) - transfer_16to8add(pY_Cur, &data[0*64], stride); - if (cbp & 16) - transfer_16to8add(pY_Cur + 8, &data[1*64], stride); - if (cbp & 8) - transfer_16to8add(pY_Cur + next_block, &data[2*64], stride); - if (cbp & 4) - transfer_16to8add(pY_Cur + next_block + 8, &data[3*64], stride); - if (cbp & 2) - transfer_16to8add(pU_Cur, &data[4*64], stride2); - if (cbp & 1) - transfer_16to8add(pV_Cur, &data[5*64], stride2); + if (cbp&32) transfer_op(pY_Cur, &data[0 * 64], stride); + if (cbp&16) transfer_op(pY_Cur + 8, &data[1 * 64], stride); + if (cbp& 8) transfer_op(pY_Cur + next_block, &data[2 * 64], stride); + if (cbp& 4) transfer_op(pY_Cur + next_block + 8, &data[3 * 64], stride); + if (cbp& 2) transfer_op(pU_Cur, &data[4 * 64], stride2); + if (cbp& 1) transfer_op(pV_Cur, &data[5 * 64], stride2); stop_transfer_timer(); +} - return cbp; +/***************************************************************************** + * Module functions + ****************************************************************************/ + +void +MBTransQuantIntra(const MBParam * const pParam, + const FRAMEINFO * const frame, + MACROBLOCK * const pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64]) +{ + + /* Transfer data */ + MBTrans8to16(pParam, frame, pMB, x_pos, y_pos, data); + + /* Perform DCT (and field decision) */ + MBfDCT(pParam, frame, pMB, x_pos, y_pos, data); + + /* Quantize the block */ + MBQuantIntra(pParam, frame, pMB, data, qcoeff); + /* DeQuantize the block */ + MBDeQuantIntra(pParam, pMB->quant, data, qcoeff); + + /* Perform inverse DCT*/ + MBiDCT(data, 0x3F); + + /* Transfer back the data -- Don't add data */ + MBTrans16to8(pParam, frame, pMB, x_pos, y_pos, data, 0, 0x3F); } -/* if sum(diff between field lines) < sum(diff between frame lines), use field dct */ +uint8_t +MBTransQuantInter(const MBParam * const pParam, + const FRAMEINFO * const frame, + MACROBLOCK * const pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64]) +{ + uint8_t cbp; + uint32_t limit; + + /* There is no MBTrans8to16 for Inter block, that's done in motion compensation + * already */ + + /* Perform DCT (and field decision) */ + MBfDCT(pParam, frame, pMB, x_pos, y_pos, data); + + /* Set the limit threshold */ + limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0); + + if (frame->vop_flags & XVID_VOP_CARTOON) + limit *= 3; + + /* Quantize the block */ + cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit); + + /* DeQuantize the block */ + MBDeQuantInter(pParam, pMB->quant, data, qcoeff, cbp); + /* Perform inverse DCT*/ + MBiDCT(data, cbp); -uint32_t MBDecideFieldDCT(int16_t data[6*64]) + /* Transfer back the data -- Add the data */ + MBTrans16to8(pParam, frame, pMB, x_pos, y_pos, data, 1, cbp); + + return(cbp); +} + +uint8_t +MBTransQuantInterBVOP(const MBParam * pParam, + FRAMEINFO * frame, + MACROBLOCK * pMB, + const uint32_t x_pos, + const uint32_t y_pos, + int16_t data[6 * 64], + int16_t qcoeff[6 * 64]) { + uint8_t cbp; + uint32_t limit; + + /* There is no MBTrans8to16 for Inter block, that's done in motion compensation + * already */ + + /* Perform DCT (and field decision) */ + MBfDCT(pParam, frame, pMB, x_pos, y_pos, data); + + /* Set the limit threshold */ + limit = BVOP_TOOSMALL_LIMIT; + + if (frame->vop_flags & XVID_VOP_CARTOON) + limit *= 2; + + /* Quantize the block */ + cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit); + + /* + * History comment: + * We don't have to DeQuant, iDCT and Transfer back data for B-frames. + * + * BUT some plugins require the rebuilt original frame to be passed so we + * have to take care of that here + */ + if((pParam->plugin_flags & XVID_REQORIGINAL)) { + + /* DeQuantize the block */ + MBDeQuantInter(pParam, pMB->quant, data, qcoeff, cbp); + + /* Perform inverse DCT*/ + MBiDCT(data, cbp); + + /* Transfer back the data -- Add the data */ + MBTrans16to8(pParam, frame, pMB, x_pos, y_pos, data, 1, cbp); + } + + return(cbp); +} - const uint8_t blocks[] = {0*64, 0*64, 0*64, 0*64, 2*64, 2*64, 2*64, 2*64}; - const uint8_t lines[] = {0, 16, 32, 48, 0, 16, 32, 48}; +/* if sum(diff between field lines) < sum(diff between frame lines), use field dct */ +uint32_t +MBFieldTest_c(int16_t data[6 * 64]) +{ + const uint8_t blocks[] = + { 0 * 64, 0 * 64, 0 * 64, 0 * 64, 2 * 64, 2 * 64, 2 * 64, 2 * 64 }; + const uint8_t lines[] = { 0, 16, 32, 48, 0, 16, 32, 48 }; int frame = 0, field = 0; int i, j; - for (i=0 ; i<7 ; ++i) - { - for (j=0 ; j<8 ; ++j) - { - frame += ABS(data[0*64 + (i+1)*8 + j] - data[0*64 + i*8 + j]); - frame += ABS(data[1*64 + (i+1)*8 + j] - data[1*64 + i*8 + j]); - frame += ABS(data[2*64 + (i+1)*8 + j] - data[2*64 + i*8 + j]); - frame += ABS(data[3*64 + (i+1)*8 + j] - data[3*64 + i*8 + j]); - - field += ABS(data[blocks[i+1] + lines[i+1] + j] -\ - data[blocks[i ] + lines[i ] + j]); - field += ABS(data[blocks[i+1] + lines[i+1] + 8 + j] -\ - data[blocks[i ] + lines[i ] + 8 + j]); - field += ABS(data[blocks[i+1] + 64 + lines[i+1] + j] -\ - data[blocks[i ] + 64 + lines[i ] + j]); - field += ABS(data[blocks[i+1] + 64 + lines[i+1] + 8 + j] -\ - data[blocks[i ] + 64 + lines[i ] + 8 + j]); + for (i = 0; i < 7; ++i) { + for (j = 0; j < 8; ++j) { + frame += + abs(data[0 * 64 + (i + 1) * 8 + j] - data[0 * 64 + i * 8 + j]); + frame += + abs(data[1 * 64 + (i + 1) * 8 + j] - data[1 * 64 + i * 8 + j]); + frame += + abs(data[2 * 64 + (i + 1) * 8 + j] - data[2 * 64 + i * 8 + j]); + frame += + abs(data[3 * 64 + (i + 1) * 8 + j] - data[3 * 64 + i * 8 + j]); + + field += + abs(data[blocks[i + 1] + lines[i + 1] + j] - + data[blocks[i] + lines[i] + j]); + field += + abs(data[blocks[i + 1] + lines[i + 1] + 8 + j] - + data[blocks[i] + lines[i] + 8 + j]); + field += + abs(data[blocks[i + 1] + 64 + lines[i + 1] + j] - + data[blocks[i] + 64 + lines[i] + j]); + field += + abs(data[blocks[i + 1] + 64 + lines[i + 1] + 8 + j] - + data[blocks[i] + 64 + lines[i] + 8 + j]); } } - if (frame > field) - { - MBFrameToField(data); - } - - return (frame > field); + return (frame >= (field + 350)); } /* deinterlace Y blocks vertically */ #define MOVLINE(X,Y) memcpy(X, Y, sizeof(tmp)) -#define LINE(X,Y) &data[X*64 + Y*8] +#define LINE(X,Y) &data[X*64 + Y*8] -void MBFrameToField(int16_t data[6*64]) +void +MBFrameToField(int16_t data[6 * 64]) { int16_t tmp[8]; /* left blocks */ - // 1=2, 2=4, 4=8, 8=1 - MOVLINE(tmp, LINE(0,1)); - MOVLINE(LINE(0,1), LINE(0,2)); - MOVLINE(LINE(0,2), LINE(0,4)); - MOVLINE(LINE(0,4), LINE(2,0)); - MOVLINE(LINE(2,0), tmp); - - // 3=6, 6=12, 12=9, 9=3 - MOVLINE(tmp, LINE(0,3)); - MOVLINE(LINE(0,3), LINE(0,6)); - MOVLINE(LINE(0,6), LINE(2,4)); - MOVLINE(LINE(2,4), LINE(2,1)); - MOVLINE(LINE(2,1), tmp); - - // 5=10, 10=5 - MOVLINE(tmp, LINE(0,5)); - MOVLINE(LINE(0,5), LINE(2,2)); - MOVLINE(LINE(2,2), tmp); - - // 7=14, 14=13, 13=11, 11=7 - MOVLINE(tmp, LINE(0,7)); - MOVLINE(LINE(0,7), LINE(2,6)); - MOVLINE(LINE(2,6), LINE(2,5)); - MOVLINE(LINE(2,5), LINE(2,3)); - MOVLINE(LINE(2,3), tmp); + /* 1=2, 2=4, 4=8, 8=1 */ + MOVLINE(tmp, LINE(0, 1)); + MOVLINE(LINE(0, 1), LINE(0, 2)); + MOVLINE(LINE(0, 2), LINE(0, 4)); + MOVLINE(LINE(0, 4), LINE(2, 0)); + MOVLINE(LINE(2, 0), tmp); + + /* 3=6, 6=12, 12=9, 9=3 */ + MOVLINE(tmp, LINE(0, 3)); + MOVLINE(LINE(0, 3), LINE(0, 6)); + MOVLINE(LINE(0, 6), LINE(2, 4)); + MOVLINE(LINE(2, 4), LINE(2, 1)); + MOVLINE(LINE(2, 1), tmp); + + /* 5=10, 10=5 */ + MOVLINE(tmp, LINE(0, 5)); + MOVLINE(LINE(0, 5), LINE(2, 2)); + MOVLINE(LINE(2, 2), tmp); + + /* 7=14, 14=13, 13=11, 11=7 */ + MOVLINE(tmp, LINE(0, 7)); + MOVLINE(LINE(0, 7), LINE(2, 6)); + MOVLINE(LINE(2, 6), LINE(2, 5)); + MOVLINE(LINE(2, 5), LINE(2, 3)); + MOVLINE(LINE(2, 3), tmp); /* right blocks */ - // 1=2, 2=4, 4=8, 8=1 - MOVLINE(tmp, LINE(1,1)); - MOVLINE(LINE(1,1), LINE(1,2)); - MOVLINE(LINE(1,2), LINE(1,4)); - MOVLINE(LINE(1,4), LINE(3,0)); - MOVLINE(LINE(3,0), tmp); - - // 3=6, 6=12, 12=9, 9=3 - MOVLINE(tmp, LINE(1,3)); - MOVLINE(LINE(1,3), LINE(1,6)); - MOVLINE(LINE(1,6), LINE(3,4)); - MOVLINE(LINE(3,4), LINE(3,1)); - MOVLINE(LINE(3,1), tmp); - - // 5=10, 10=5 - MOVLINE(tmp, LINE(1,5)); - MOVLINE(LINE(1,5), LINE(3,2)); - MOVLINE(LINE(3,2), tmp); - - // 7=14, 14=13, 13=11, 11=7 - MOVLINE(tmp, LINE(1,7)); - MOVLINE(LINE(1,7), LINE(3,6)); - MOVLINE(LINE(3,6), LINE(3,5)); - MOVLINE(LINE(3,5), LINE(3,3)); - MOVLINE(LINE(3,3), tmp); + /* 1=2, 2=4, 4=8, 8=1 */ + MOVLINE(tmp, LINE(1, 1)); + MOVLINE(LINE(1, 1), LINE(1, 2)); + MOVLINE(LINE(1, 2), LINE(1, 4)); + MOVLINE(LINE(1, 4), LINE(3, 0)); + MOVLINE(LINE(3, 0), tmp); + + /* 3=6, 6=12, 12=9, 9=3 */ + MOVLINE(tmp, LINE(1, 3)); + MOVLINE(LINE(1, 3), LINE(1, 6)); + MOVLINE(LINE(1, 6), LINE(3, 4)); + MOVLINE(LINE(3, 4), LINE(3, 1)); + MOVLINE(LINE(3, 1), tmp); + + /* 5=10, 10=5 */ + MOVLINE(tmp, LINE(1, 5)); + MOVLINE(LINE(1, 5), LINE(3, 2)); + MOVLINE(LINE(3, 2), tmp); + + /* 7=14, 14=13, 13=11, 11=7 */ + MOVLINE(tmp, LINE(1, 7)); + MOVLINE(LINE(1, 7), LINE(3, 6)); + MOVLINE(LINE(3, 6), LINE(3, 5)); + MOVLINE(LINE(3, 5), LINE(3, 3)); + MOVLINE(LINE(3, 3), tmp); +} + +/***************************************************************************** + * Trellis based R-D optimal quantization + * + * Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net + * + ****************************************************************************/ + +/*---------------------------------------------------------------------------- + * + * Trellis-Based quantization + * + * So far I understand this paper: + * + * "Trellis-Based R-D Optimal Quantization in H.263+" + * J.Wen, M.Luttrell, J.Villasenor + * IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000. + * + * we are at stake with a simplified Bellmand-Ford / Dijkstra Single + * Source Shortest Path algo. But due to the underlying graph structure + * ("Trellis"), it can be turned into a dynamic programming algo, + * partially saving the explicit graph's nodes representation. And + * without using a heap, since the open frontier of the DAG is always + * known, and of fixed size. + *--------------------------------------------------------------------------*/ + + + +/* Codes lengths for relevant levels. */ + +/* let's factorize: */ +static const uint8_t Code_Len0[64] = { + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len1[64] = { + 20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len2[64] = { + 19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len3[64] = { + 18,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len4[64] = { + 17,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len5[64] = { + 16,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len6[64] = { + 15,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len7[64] = { + 13,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len8[64] = { + 11,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len9[64] = { + 12,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len10[64] = { + 12,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len11[64] = { + 12,19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len12[64] = { + 11,17,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len13[64] = { + 11,15,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len14[64] = { + 10,12,19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len15[64] = { + 10,13,17,19,21,21,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len16[64] = { + 9,12,13,18,18,19,19,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; +static const uint8_t Code_Len17[64] = { + 8,11,13,14,14,14,15,19,19,19,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len18[64] = { + 7, 9,11,11,13,13,13,15,15,15,16,22,22,22,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len19[64] = { + 5, 7, 9,10,10,11,11,11,11,11,13,14,16,17,17,18,18,18,18,18,18,18,18,20,20,21,21,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 }; +static const uint8_t Code_Len20[64] = { + 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15, + 15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 }; + +/* a few more table for LAST table: */ +static const uint8_t Code_Len21[64] = { + 13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; +static const uint8_t Code_Len22[64] = { + 12,15,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30, + 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; +static const uint8_t Code_Len23[64] = { + 10,12,15,15,15,16,16,16,16,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,20,20,20, + 20,21,21,21,21,21,21,21,21,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30}; +static const uint8_t Code_Len24[64] = { + 5, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,10,10,10,10,10,10,10,10,11,11,11,11,12,12,12, + 12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19}; + + +static const uint8_t * const B16_17_Code_Len[24] = { /* levels [1..24] */ + Code_Len20,Code_Len19,Code_Len18,Code_Len17, + Code_Len16,Code_Len15,Code_Len14,Code_Len13, + Code_Len12,Code_Len11,Code_Len10,Code_Len9, + Code_Len8, Code_Len7 ,Code_Len6 ,Code_Len5, + Code_Len4, Code_Len3, Code_Len3 ,Code_Len2, + Code_Len2, Code_Len1, Code_Len1, Code_Len1, +}; + +static const uint8_t * const B16_17_Code_Len_Last[6] = { /* levels [1..6] */ + Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1, +}; + +/* TL_SHIFT controls the precision of the RD optimizations in trellis + * valid range is [10..16]. The bigger, the more trellis is vulnerable + * to overflows in cost formulas. + * - 10 allows ac values up to 2^11 == 2048 + * - 16 allows ac values up to 2^8 == 256 + */ +#define TL_SHIFT 11 +#define TL(q) ((0xfe00>>(16-TL_SHIFT))/(q*q)) + +static const int Trellis_Lambda_Tabs[31] = { + TL( 1),TL( 2),TL( 3),TL( 4),TL( 5),TL( 6), TL( 7), + TL( 8),TL( 9),TL(10),TL(11),TL(12),TL(13),TL(14), TL(15), + TL(16),TL(17),TL(18),TL(19),TL(20),TL(21),TL(22), TL(23), + TL(24),TL(25),TL(26),TL(27),TL(28),TL(29),TL(30), TL(31) +}; +#undef TL + +static int __inline +Find_Last(const int16_t *C, const uint16_t *Zigzag, int i) +{ + while(i>=0) + if (C[Zigzag[i]]) + return i; + else i--; + return -1; +} + +/* this routine has been strippen of all debug code */ +static int +dct_quantize_trellis_c(int16_t *const Out, + const int16_t *const In, + int Q, + const uint16_t * const Zigzag, + const uint16_t * const QuantMatrix, + int Non_Zero, + int Sum) +{ + + /* Note: We should search last non-zero coeffs on *real* DCT input coeffs + * (In[]), not quantized one (Out[]). However, it only improves the result + * *very* slightly (~0.01dB), whereas speed drops to crawling level :) + * Well, actually, taking 1 more coeff past Non_Zero into account sometimes + * helps. */ + typedef struct { int16_t Run, Level; } NODE; + + NODE Nodes[65], Last = { 0, 0}; + uint32_t Run_Costs0[64+1]; + uint32_t * const Run_Costs = Run_Costs0 + 1; + + /* it's 1/lambda, actually */ + const int Lambda = Trellis_Lambda_Tabs[Q-1]; + + int Run_Start = -1; + uint32_t Min_Cost = 2<>4); + const int Mult = 2*q; + const int Bias = (q-1) | 1; + const int Lev0 = Mult + Bias; + + const int AC = In[Zigzag[i]]; + const int Level1 = Out[Zigzag[i]]; + const unsigned int Dist0 = Lambda* AC*AC; + uint32_t Best_Cost = 0xf0000000; + Last_Cost += Dist0; + + /* very specialized loop for -1,0,+1 */ + if ((uint32_t)(Level1+1)<3) { + int dQ; + int Run; + uint32_t Cost0; + + if (AC<0) { + Nodes[i].Level = -1; + dQ = Lev0 + AC; + } else { + Nodes[i].Level = 1; + dQ = Lev0 - AC; + } + Cost0 = Lambda*dQ*dQ; + + Nodes[i].Run = 1; + Best_Cost = (Code_Len20[0]<0; --Run) { + const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run]; + const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]< hifreq errors (HVS) */ + + if (Cost(uint32_t)(Level1+25)) { + /* "big" levels (not less than ESC3, though) */ + const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last; + int Level2; + int dQ1, dQ2; + int Run; + uint32_t Dist1,Dist2; + int dDist21; + + if (Level1>1) { + dQ1 = Level1*Mult-AC + Bias; + dQ2 = dQ1 - Mult; + Level2 = Level1-1; + Tbl_L1 = (Level1<=24) ? B16_17_Code_Len[Level1-1] : Code_Len0; + Tbl_L2 = (Level2<=24) ? B16_17_Code_Len[Level2-1] : Code_Len0; + Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0; + Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0; + } else { /* Level1<-1 */ + dQ1 = Level1*Mult-AC - Bias; + dQ2 = dQ1 + Mult; + Level2 = Level1 + 1; + Tbl_L1 = (Level1>=-24) ? B16_17_Code_Len[Level1^-1] : Code_Len0; + Tbl_L2 = (Level2>=-24) ? B16_17_Code_Len[Level2^-1] : Code_Len0; + Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0; + Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0; + } + + Dist1 = Lambda*dQ1*dQ1; + Dist2 = Lambda*dQ2*dQ2; + dDist21 = Dist2-Dist1; + + for(Run=i-Run_Start; Run>0; --Run) + { + const uint32_t Cost_Base = Dist1 + Run_Costs[i-Run]; + uint32_t Cost1, Cost2; + int bLevel; + + /* for sub-optimal (but slightly worth it, speed-wise) search, + * uncomment the following: + * if (Cost_Base>=Best_Cost) continue; + * (? doesn't seem to have any effect -- gruel ) */ + + Cost1 = Cost_Base + (Tbl_L1[Run-1]< Simply pick best Run. */ + int Run; + for(Run=i-Run_Start; Run>0; --Run) { + /* 30 bits + no distortion */ + const uint32_t Cost = (30<Min_Cost+(1<=0) { + Out[Zigzag[i]] = Nodes[i].Level; + Sum += abs(Nodes[i].Level); + i -= Nodes[i].Run; + } + + return Sum; +} + +/* original version including heavy debugging info */ + +#ifdef DBGTRELL + +#define DBG 0 + +static __inline uint32_t Evaluate_Cost(const int16_t *C, int Mult, int Bias, + const uint16_t * Zigzag, int Max, int Lambda) +{ +#if (DBG>0) + const int16_t * const Ref = C + 6*64; + int Last = Max; + int Bits = 0; + int Dist = 0; + int i; + uint32_t Cost; + + while(Last>=0 && C[Zigzag[Last]]==0) + Last--; + + if (Last>=0) { + int j=0, j0=0; + int Run, Level; + + Bits = 2; /* CBP */ + while(j=-24 && Level<=24) + Bits += B16_17_Code_Len[(Level<0) ? -Level-1 : Level-1][Run]; + else + Bits += 30; + } + Level = C[Zigzag[Last]]; + Run = j - j0; + if (Level>=-6 && Level<=6) + Bits += B16_17_Code_Len_Last[(Level<0) ? -Level-1 : Level-1][Run]; + else + Bits += 30; + } + + for(i=0; i<=Last; ++i) { + int V = C[Zigzag[i]]*Mult; + if (V>0) + V += Bias; + else + if (V<0) + V -= Bias; + V -= Ref[Zigzag[i]]; + Dist += V*V; + } + Cost = Lambda*Dist + (Bits<>12= %d ", Last,Max, Bits, Dist, Cost, Cost>>12 ); + return Cost; + +#else + return 0; +#endif +} + + +static int +dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero) +{ + + /* + * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]), + * not quantized one (Out[]). However, it only improves the result *very* + * slightly (~0.01dB), whereas speed drops to crawling level :) + * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps. + */ + typedef struct { int16_t Run, Level; } NODE; + + NODE Nodes[65], Last; + uint32_t Run_Costs0[64+1]; + uint32_t * const Run_Costs = Run_Costs0 + 1; + const int Mult = 2*Q; + const int Bias = (Q-1) | 1; + const int Lev0 = Mult + Bias; + const int Lambda = Trellis_Lambda_Tabs[Q-1]; /* it's 1/lambda, actually */ + + int Run_Start = -1; + Run_Costs[-1] = 2<0) + Last.Level = 0; Last.Run = -1; /* just initialize to smthg */ +#endif + + Non_Zero = Find_Last(Out, Zigzag, Non_Zero); + if (Non_Zero<0) + return -1; + + for(i=0; i<=Non_Zero; i++) + { + const int AC = In[Zigzag[i]]; + const int Level1 = Out[Zigzag[i]]; + const int Dist0 = Lambda* AC*AC; + uint32_t Best_Cost = 0xf0000000; + Last_Cost += Dist0; + + if ((uint32_t)(Level1+1)<3) /* very specialized loop for -1,0,+1 */ + { + int dQ; + int Run; + uint32_t Cost0; + + if (AC<0) { + Nodes[i].Level = -1; + dQ = Lev0 + AC; + } else { + Nodes[i].Level = 1; + dQ = Lev0 - AC; + } + Cost0 = Lambda*dQ*dQ; + + Nodes[i].Run = 1; + Best_Cost = (Code_Len20[0]<0; --Run) + { + const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run]; + const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<>12 ); + else if (j>Run_Start && j>12 ); + else if (j==i) printf( "(%3.0d)", Run_Costs[j]>>12 ); + else printf( " - |" ); + } + printf( "<%3.0d %2d %d>", Min_Cost>>12, Nodes[i].Level, Nodes[i].Run ); + printf( " Last:#%2d {%3.0d %2d %d}", Last_Node, Last_Cost>>12, Last.Level, Last.Run ); + printf( " AC:%3.0d Dist0:%3d Dist(%d)=%d", AC, Dist0>>12, Nodes[i].Level, Cost0>>12 ); + printf( "\n" ); + } + } + else /* "big" levels */ + { + const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last; + int Level2; + int dQ1, dQ2; + int Run; + uint32_t Dist1,Dist2; + int dDist21; + + if (Level1>1) { + dQ1 = Level1*Mult-AC + Bias; + dQ2 = dQ1 - Mult; + Level2 = Level1-1; + Tbl_L1 = (Level1<=24) ? B16_17_Code_Len[Level1-1] : Code_Len0; + Tbl_L2 = (Level2<=24) ? B16_17_Code_Len[Level2-1] : Code_Len0; + Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0; + Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0; + } else { /* Level1<-1 */ + dQ1 = Level1*Mult-AC - Bias; + dQ2 = dQ1 + Mult; + Level2 = Level1 + 1; + Tbl_L1 = (Level1>=-24) ? B16_17_Code_Len[Level1^-1] : Code_Len0; + Tbl_L2 = (Level2>=-24) ? B16_17_Code_Len[Level2^-1] : Code_Len0; + Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0; + Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0; + } + Dist1 = Lambda*dQ1*dQ1; + Dist2 = Lambda*dQ2*dQ2; + dDist21 = Dist2-Dist1; + + for(Run=i-Run_Start; Run>0; --Run) + { + const uint32_t Cost_Base = Dist1 + Run_Costs[i-Run]; + uint32_t Cost1, Cost2; + int bLevel; + +/* + * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following: + * if (Cost_Base>=Best_Cost) continue; + */ + Cost1 = Cost_Base + (Tbl_L1[Run-1]<>12 ); + else if (j>Run_Start && j>12 ); + else if (j==i) printf( "(%3.0d)", Run_Costs[j]>>12 ); + else printf( " - |" ); + } + printf( "<%3.0d %2d %d>", Min_Cost>>12, Nodes[i].Level, Nodes[i].Run ); + printf( " Last:#%2d {%3.0d %2d %d}", Last_Node, Last_Cost>>12, Last.Level, Last.Run ); + printf( " AC:%3.0d Dist0:%3d Dist(%2d):%3d Dist(%2d):%3d", AC, Dist0>>12, Level1, Dist1>>12, Level2, Dist2>>12 ); + printf( "\n" ); + } + } + + Run_Costs[i] = Best_Cost; + + if (Best_Cost < Min_Cost + Dist0) { + Min_Cost = Best_Cost; + Run_Start = i; + } + else + { + /* + * as noticed by Michael Niedermayer (michaelni at gmx.at), there's + * a code shorter by 1 bit for a larger run (!), same level. We give + * it a chance by not moving the left barrier too much. + */ + + while( Run_Costs[Run_Start]>Min_Cost+(1< " ); + for(i=0; i<=Non_Zero; ++i) printf( "[%3.0d] ", Out[Zigzag[i]] ); + printf( "\n" ); + } + } + + if (Last_Node<0) + return -1; + + /* reconstruct optimal sequence backward with surviving paths */ + memset(Out, 0x00, 64*sizeof(*Out)); + Out[Zigzag[Last_Node]] = Last.Level; + i = Last_Node - Last.Run; + while(i>=0) { + Out[Zigzag[i]] = Nodes[i].Level; + i -= Nodes[i].Run; + } + + if (DBG) { + uint32_t Cost = Evaluate_Cost(Out,Mult,Bias, Zigzag,Non_Zero, Lambda); + if (DBG==1) { + printf( "<= " ); + for(i=0; i<=Last_Node; ++i) printf( "[%3.0d] ", Out[Zigzag[i]] ); + printf( "\n--------------------------------\n" ); + } + if (Cost>Last_Cost) printf( "!!! %u > %u\n", Cost, Last_Cost ); + } + return Last_Node; } + +#undef DBG + +#endif