[cvs] / xvidcore / src / utils / mbtransquant.c Repository:
ViewVC logotype

Diff of /xvidcore/src/utils/mbtransquant.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.21.2.12, Mon May 12 12:33:16 2003 UTC revision 1.27, Sun Dec 19 12:49:05 2004 UTC
# Line 39  Line 39 
39  #include "../bitstream/zigzag.h"  #include "../bitstream/zigzag.h"
40  #include "../dct/fdct.h"  #include "../dct/fdct.h"
41  #include "../dct/idct.h"  #include "../dct/idct.h"
42  #include "../quant/quant_mpeg4.h"  #include "../quant/quant.h"
 #include "../quant/quant_h263.h"  
43  #include "../encoder.h"  #include "../encoder.h"
44    
45  #include "../image/reduced.h"  #include  "../quant/quant_matrix.h"
46    
47  MBFIELDTEST_PTR MBFieldTest;  MBFIELDTEST_PTR MBFieldTest;
48    
# Line 123  Line 122 
122                           int16_t qcoeff[6 * 64],                           int16_t qcoeff[6 * 64],
123                           int16_t data[6*64])                           int16_t data[6*64])
124  {  {
125          int i;          int mpeg;
126            int scaler_lum, scaler_chr;
127    
128          for (i = 0; i < 6; i++) {          quant_intraFuncPtr const quant[2] =
129                  uint32_t iDcScaler = get_dc_scaler(pMB->quant, i < 4);                  {
130                            quant_h263_intra,
131                            quant_mpeg_intra
132                    };
133    
134            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
135            scaler_lum = get_dc_scaler(pMB->quant, 1);
136            scaler_chr = get_dc_scaler(pMB->quant, 0);
137    
138                  /* Quantize the block */                  /* Quantize the block */
139                  start_timer();                  start_timer();
140                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT)) {          quant[mpeg](&data[0 * 64], &qcoeff[0 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices);
141                          quant_intra(&data[i * 64], &qcoeff[i * 64], pMB->quant, iDcScaler);          quant[mpeg](&data[1 * 64], &qcoeff[1 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices);
142                  } else {          quant[mpeg](&data[2 * 64], &qcoeff[2 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices);
143                          quant4_intra(&data[i * 64], &qcoeff[i * 64], pMB->quant, iDcScaler);          quant[mpeg](&data[3 * 64], &qcoeff[3 * 64], pMB->quant, scaler_lum, pParam->mpeg_quant_matrices);
144                  }          quant[mpeg](&data[4 * 64], &qcoeff[4 * 64], pMB->quant, scaler_chr, pParam->mpeg_quant_matrices);
145            quant[mpeg](&data[5 * 64], &qcoeff[5 * 64], pMB->quant, scaler_chr, pParam->mpeg_quant_matrices);
146                  stop_quant_timer();                  stop_quant_timer();
147          }          }
 }  
148    
149  /* DeQuantize all blocks -- Intra mode */  /* DeQuantize all blocks -- Intra mode */
150  static __inline void  static __inline void
# Line 146  Line 153 
153                             int16_t qcoeff[6 * 64],                             int16_t qcoeff[6 * 64],
154                             int16_t data[6*64])                             int16_t data[6*64])
155  {  {
156          int i;          int mpeg;
157            int scaler_lum, scaler_chr;
158    
159          for (i = 0; i < 6; i++) {          quant_intraFuncPtr const dequant[2] =
160                  uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);                  {
161                            dequant_h263_intra,
162                            dequant_mpeg_intra
163                    };
164    
165            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
166            scaler_lum = get_dc_scaler(iQuant, 1);
167            scaler_chr = get_dc_scaler(iQuant, 0);
168    
169                  start_timer();                  start_timer();
170                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT))          dequant[mpeg](&qcoeff[0 * 64], &data[0 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices);
171                          dequant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);          dequant[mpeg](&qcoeff[1 * 64], &data[1 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices);
172                  else          dequant[mpeg](&qcoeff[2 * 64], &data[2 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices);
173                          dequant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);          dequant[mpeg](&qcoeff[3 * 64], &data[3 * 64], iQuant, scaler_lum, pParam->mpeg_quant_matrices);
174            dequant[mpeg](&qcoeff[4 * 64], &data[4 * 64], iQuant, scaler_chr, pParam->mpeg_quant_matrices);
175            dequant[mpeg](&qcoeff[5 * 64], &data[5 * 64], iQuant, scaler_chr, pParam->mpeg_quant_matrices);
176                  stop_iquant_timer();                  stop_iquant_timer();
177          }          }
 }  
   
   
 static int  
 dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero);  
178    
179  static int  static int
180  dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero);  dct_quantize_trellis_c(int16_t *const Out,
181                                               const int16_t *const In,
182                                               int Q,
183                                               const uint16_t * const Zigzag,
184                                               const uint16_t * const QuantMatrix,
185                                               int Non_Zero,
186                                               int Sum);
187    
188  /* Quantize all blocks -- Inter mode */  /* Quantize all blocks -- Inter mode */
189  static __inline uint8_t  static __inline uint8_t
# Line 182  Line 199 
199          int i;          int i;
200          uint8_t cbp = 0;          uint8_t cbp = 0;
201          int sum;          int sum;
202          int code_block;          int code_block, mpeg;
203    
204            quant_interFuncPtr const quant[2] =
205                    {
206                            quant_h263_inter,
207                            quant_mpeg_inter
208                    };
209    
210            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
211    
212          for (i = 0; i < 6; i++) {          for (i = 0; i < 6; i++) {
213    
214                  /* Quantize the block */                  /* Quantize the block */
215                  start_timer();                  start_timer();
216                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT)) {  
217                          sum = quant_inter(&qcoeff[i*64], &data[i*64], pMB->quant);                  sum = quant[mpeg](&qcoeff[i*64], &data[i*64], pMB->quant, pParam->mpeg_quant_matrices);
218                          if ( (sum) && (frame->vop_flags & XVID_VOP_TRELLISQUANT) ) {  
219                                  sum = dct_quantize_trellis_h263_c(&qcoeff[i*64], &data[i*64], pMB->quant, &scan_tables[0][0], 63)+1;                  if(sum && (pMB->quant > 2) && (frame->vop_flags & XVID_VOP_TRELLISQUANT)) {
220                                  limit = 1;                          const uint16_t *matrix;
221                          }                          const static uint16_t h263matrix[] =
222                  } else {                                  {
223                          sum = quant4_inter(&qcoeff[i * 64], &data[i * 64], pMB->quant);                                          16, 16, 16, 16, 16, 16, 16, 16,
224  //                      if ( (sum) && (frame->vop_flags & XVID_VOP_TRELLISQUANT) )                                          16, 16, 16, 16, 16, 16, 16, 16,
225  //                              sum = dct_quantize_trellis_mpeg_c (&qcoeff[i*64], &data[i*64], pMB->quant)+1;                                          16, 16, 16, 16, 16, 16, 16, 16,
226                                            16, 16, 16, 16, 16, 16, 16, 16,
227                                            16, 16, 16, 16, 16, 16, 16, 16,
228                                            16, 16, 16, 16, 16, 16, 16, 16,
229                                            16, 16, 16, 16, 16, 16, 16, 16,
230                                            16, 16, 16, 16, 16, 16, 16, 16
231                                    };
232    
233                            matrix = (mpeg)?get_inter_matrix(pParam->mpeg_quant_matrices):h263matrix;
234                            sum = dct_quantize_trellis_c(&qcoeff[i*64], &data[i*64],
235                                                                                     pMB->quant, &scan_tables[0][0],
236                                                                                     matrix,
237                                                                                     63,
238                                                                                     sum);
239                  }                  }
240                  stop_quant_timer();                  stop_quant_timer();
241    
# Line 236  Line 274 
274                             int16_t qcoeff[6 * 64],                             int16_t qcoeff[6 * 64],
275                             const uint8_t cbp)                             const uint8_t cbp)
276  {  {
277          int i;          int mpeg;
278    
279            quant_interFuncPtr const dequant[2] =
280                    {
281                            dequant_h263_inter,
282                            dequant_mpeg_inter
283                    };
284    
285            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
286    
         for (i = 0; i < 6; i++) {  
                 if (cbp & (1 << (5 - i))) {  
287                          start_timer();                          start_timer();
288                          if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT))          if(cbp & (1 << (5 - 0))) dequant[mpeg](&data[0 * 64], &qcoeff[0 * 64], iQuant, pParam->mpeg_quant_matrices);
289                                  dequant_inter(&data[i * 64], &qcoeff[i * 64], iQuant);          if(cbp & (1 << (5 - 1))) dequant[mpeg](&data[1 * 64], &qcoeff[1 * 64], iQuant, pParam->mpeg_quant_matrices);
290                          else          if(cbp & (1 << (5 - 2))) dequant[mpeg](&data[2 * 64], &qcoeff[2 * 64], iQuant, pParam->mpeg_quant_matrices);
291                                  dequant4_inter(&data[i * 64], &qcoeff[i * 64], iQuant);          if(cbp & (1 << (5 - 3))) dequant[mpeg](&data[3 * 64], &qcoeff[3 * 64], iQuant, pParam->mpeg_quant_matrices);
292            if(cbp & (1 << (5 - 4))) dequant[mpeg](&data[4 * 64], &qcoeff[4 * 64], iQuant, pParam->mpeg_quant_matrices);
293            if(cbp & (1 << (5 - 5))) dequant[mpeg](&data[5 * 64], &qcoeff[5 * 64], iQuant, pParam->mpeg_quant_matrices);
294                          stop_iquant_timer();                          stop_iquant_timer();
295                  }                  }
         }  
 }  
296    
297  typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS);  typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS);
298  typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS);  typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS);
# Line 265  Line 309 
309          uint32_t stride = pParam->edged_width;          uint32_t stride = pParam->edged_width;
310          uint32_t stride2 = stride / 2;          uint32_t stride2 = stride / 2;
311          uint32_t next_block = stride * 8;          uint32_t next_block = stride * 8;
         int32_t cst;  
312          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
313          const IMAGE * const pCurrent = &frame->image;          const IMAGE * const pCurrent = &frame->image;
         transfer_operation_8to16_t *transfer_op = NULL;  
   
         if ((frame->vop_flags & XVID_VOP_REDUCED)) {  
   
                 /* Image pointers */  
                 pY_Cur = pCurrent->y + (y_pos << 5) * stride  + (x_pos << 5);  
                 pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4);  
                 pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4);  
   
                 /* Block size */  
                 cst = 16;  
   
                 /* Operation function */  
                 transfer_op = (transfer_operation_8to16_t*)filter_18x18_to_8x8;  
         } else {  
314    
315                  /* Image pointers */                  /* Image pointers */
316                  pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);                  pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);
317                  pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);                  pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);
318                  pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);                  pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);
319    
                 /* Block size */  
                 cst = 8;  
   
                 /* Operation function */  
                 transfer_op = (transfer_operation_8to16_t*)transfer_8to16copy;  
         }  
   
320          /* Do the transfer */          /* Do the transfer */
321          start_timer();          start_timer();
322          transfer_op(&data[0 * 64], pY_Cur, stride);          transfer_8to16copy(&data[0 * 64], pY_Cur, stride);
323          transfer_op(&data[1 * 64], pY_Cur + cst, stride);          transfer_8to16copy(&data[1 * 64], pY_Cur + 8, stride);
324          transfer_op(&data[2 * 64], pY_Cur + next_block, stride);          transfer_8to16copy(&data[2 * 64], pY_Cur + next_block, stride);
325          transfer_op(&data[3 * 64], pY_Cur + next_block + cst, stride);          transfer_8to16copy(&data[3 * 64], pY_Cur + next_block + 8, stride);
326          transfer_op(&data[4 * 64], pU_Cur, stride2);          transfer_8to16copy(&data[4 * 64], pU_Cur, stride2);
327          transfer_op(&data[5 * 64], pV_Cur, stride2);          transfer_8to16copy(&data[5 * 64], pV_Cur, stride2);
328          stop_transfer_timer();          stop_transfer_timer();
329  }  }
330    
# Line 314  Line 335 
335                           const uint32_t x_pos,                           const uint32_t x_pos,
336                           const uint32_t y_pos,                           const uint32_t y_pos,
337                           int16_t data[6 * 64],                           int16_t data[6 * 64],
338                           const uint32_t add,                           const uint32_t add, /* Must be 1 or 0 */
339                           const uint8_t cbp)                           const uint8_t cbp)
340  {  {
341          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
342          uint32_t stride = pParam->edged_width;          uint32_t stride = pParam->edged_width;
343          uint32_t stride2 = stride / 2;          uint32_t stride2 = stride / 2;
344          uint32_t next_block = stride * 8;          uint32_t next_block = stride * 8;
         uint32_t cst;  
345          const IMAGE * const pCurrent = &frame->image;          const IMAGE * const pCurrent = &frame->image;
         transfer_operation_16to8_t *transfer_op = NULL;  
   
         if (pMB->field_dct) {  
                 next_block = stride;  
                 stride *= 2;  
         }  
   
         if ((frame->vop_flags & XVID_VOP_REDUCED)) {  
346    
347                  /* Image pointers */          /* Array of function pointers, indexed by [add] */
348                  pY_Cur = pCurrent->y + (y_pos << 5) * stride  + (x_pos << 5);          transfer_operation_16to8_t  * const functions[2] =
349                  pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4);                  {
350                  pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4);                          (transfer_operation_16to8_t*)transfer_16to8copy,
351                            (transfer_operation_16to8_t*)transfer_16to8add,
352                  /* Block size */                  };
                 cst = 16;  
353    
354                  /* Operation function */          transfer_operation_16to8_t *transfer_op = NULL;
                 if(add)  
                         transfer_op = (transfer_operation_16to8_t*)add_upsampled_8x8_16to8;  
                 else  
                         transfer_op = (transfer_operation_16to8_t*)copy_upsampled_8x8_16to8;  
         } else {  
355    
356                  /* Image pointers */                  /* Image pointers */
357                  pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);                  pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);
358                  pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);                  pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);
359                  pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);                  pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);
360    
361                  /* Block size */          if (pMB->field_dct) {
362                  cst = 8;                  next_block = stride;
363                    stride *= 2;
364            }
365    
366                  /* Operation function */                  /* Operation function */
367                  if(add)          transfer_op = functions[add];
                         transfer_op = (transfer_operation_16to8_t*)transfer_16to8add;  
                 else  
                         transfer_op = (transfer_operation_16to8_t*)transfer_16to8copy;  
         }  
368    
369          /* Do the operation */          /* Do the operation */
370          start_timer();          start_timer();
371          if (cbp&32) transfer_op(pY_Cur, &data[0 * 64], stride);          if (cbp&32) transfer_op(pY_Cur, &data[0 * 64], stride);
372          if (cbp&16) transfer_op(pY_Cur + cst, &data[1 * 64], stride);          if (cbp&16) transfer_op(pY_Cur + 8,                                     &data[1 * 64], stride);
373          if (cbp& 8) transfer_op(pY_Cur + next_block, &data[2 * 64], stride);          if (cbp& 8) transfer_op(pY_Cur + next_block, &data[2 * 64], stride);
374          if (cbp& 4) transfer_op(pY_Cur + next_block + cst, &data[3 * 64], stride);          if (cbp& 4) transfer_op(pY_Cur + next_block + 8,        &data[3 * 64], stride);
375          if (cbp& 2) transfer_op(pU_Cur, &data[4 * 64], stride2);          if (cbp& 2) transfer_op(pU_Cur, &data[4 * 64], stride2);
376          if (cbp& 1) transfer_op(pV_Cur, &data[5 * 64], stride2);          if (cbp& 1) transfer_op(pV_Cur, &data[5 * 64], stride2);
377          stop_transfer_timer();          stop_transfer_timer();
# Line 419  Line 423 
423          uint8_t cbp;          uint8_t cbp;
424          uint32_t limit;          uint32_t limit;
425    
426          /*          /* There is no MBTrans8to16 for Inter block, that's done in motion compensation
427           * There is no MBTrans8to16 for Inter block, that's done in motion compensation           * already */
          * already  
          */  
428    
429          /* Perform DCT (and field decision) */          /* Perform DCT (and field decision) */
430          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);
# Line 430  Line 432 
432          /* Set the limit threshold */          /* Set the limit threshold */
433          limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0);          limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0);
434    
435            if (frame->vop_flags & XVID_VOP_CARTOON)
436                    limit *= 3;
437    
438          /* Quantize the block */          /* Quantize the block */
439          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit);          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit);
440    
# Line 457  Line 462 
462          uint8_t cbp;          uint8_t cbp;
463          uint32_t limit;          uint32_t limit;
464    
465          /*          /* There is no MBTrans8to16 for Inter block, that's done in motion compensation
466           * There is no MBTrans8to16 for Inter block, that's done in motion compensation           * already */
          * already  
          */  
467    
468          /* Perform DCT (and field decision) */          /* Perform DCT (and field decision) */
469          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);
# Line 468  Line 471 
471          /* Set the limit threshold */          /* Set the limit threshold */
472          limit = BVOP_TOOSMALL_LIMIT;          limit = BVOP_TOOSMALL_LIMIT;
473    
474            if (frame->vop_flags & XVID_VOP_CARTOON)
475                    limit *= 2;
476    
477          /* Quantize the block */          /* Quantize the block */
478          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit);          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit);
479    
# Line 475  Line 481 
481           * History comment:           * History comment:
482           * We don't have to DeQuant, iDCT and Transfer back data for B-frames.           * We don't have to DeQuant, iDCT and Transfer back data for B-frames.
483           *           *
484           * BUT some plugins require the original frame to be passed so we have           * BUT some plugins require the rebuilt original frame to be passed so we
485           * to take care of that here           * have to take care of that here
486           */           */
487          if((pParam->plugin_flags & XVID_REQORIGINAL)) {          if((pParam->plugin_flags & XVID_REQORIGINAL)) {
488    
# Line 546  Line 552 
552    
553          /* left blocks */          /* left blocks */
554    
555          // 1=2, 2=4, 4=8, 8=1          /* 1=2, 2=4, 4=8, 8=1 */
556          MOVLINE(tmp, LINE(0, 1));          MOVLINE(tmp, LINE(0, 1));
557          MOVLINE(LINE(0, 1), LINE(0, 2));          MOVLINE(LINE(0, 1), LINE(0, 2));
558          MOVLINE(LINE(0, 2), LINE(0, 4));          MOVLINE(LINE(0, 2), LINE(0, 4));
559          MOVLINE(LINE(0, 4), LINE(2, 0));          MOVLINE(LINE(0, 4), LINE(2, 0));
560          MOVLINE(LINE(2, 0), tmp);          MOVLINE(LINE(2, 0), tmp);
561    
562          // 3=6, 6=12, 12=9, 9=3          /* 3=6, 6=12, 12=9, 9=3 */
563          MOVLINE(tmp, LINE(0, 3));          MOVLINE(tmp, LINE(0, 3));
564          MOVLINE(LINE(0, 3), LINE(0, 6));          MOVLINE(LINE(0, 3), LINE(0, 6));
565          MOVLINE(LINE(0, 6), LINE(2, 4));          MOVLINE(LINE(0, 6), LINE(2, 4));
566          MOVLINE(LINE(2, 4), LINE(2, 1));          MOVLINE(LINE(2, 4), LINE(2, 1));
567          MOVLINE(LINE(2, 1), tmp);          MOVLINE(LINE(2, 1), tmp);
568    
569          // 5=10, 10=5          /* 5=10, 10=5 */
570          MOVLINE(tmp, LINE(0, 5));          MOVLINE(tmp, LINE(0, 5));
571          MOVLINE(LINE(0, 5), LINE(2, 2));          MOVLINE(LINE(0, 5), LINE(2, 2));
572          MOVLINE(LINE(2, 2), tmp);          MOVLINE(LINE(2, 2), tmp);
573    
574          // 7=14, 14=13, 13=11, 11=7          /* 7=14, 14=13, 13=11, 11=7 */
575          MOVLINE(tmp, LINE(0, 7));          MOVLINE(tmp, LINE(0, 7));
576          MOVLINE(LINE(0, 7), LINE(2, 6));          MOVLINE(LINE(0, 7), LINE(2, 6));
577          MOVLINE(LINE(2, 6), LINE(2, 5));          MOVLINE(LINE(2, 6), LINE(2, 5));
# Line 574  Line 580 
580    
581          /* right blocks */          /* right blocks */
582    
583          // 1=2, 2=4, 4=8, 8=1          /* 1=2, 2=4, 4=8, 8=1 */
584          MOVLINE(tmp, LINE(1, 1));          MOVLINE(tmp, LINE(1, 1));
585          MOVLINE(LINE(1, 1), LINE(1, 2));          MOVLINE(LINE(1, 1), LINE(1, 2));
586          MOVLINE(LINE(1, 2), LINE(1, 4));          MOVLINE(LINE(1, 2), LINE(1, 4));
587          MOVLINE(LINE(1, 4), LINE(3, 0));          MOVLINE(LINE(1, 4), LINE(3, 0));
588          MOVLINE(LINE(3, 0), tmp);          MOVLINE(LINE(3, 0), tmp);
589    
590          // 3=6, 6=12, 12=9, 9=3          /* 3=6, 6=12, 12=9, 9=3 */
591          MOVLINE(tmp, LINE(1, 3));          MOVLINE(tmp, LINE(1, 3));
592          MOVLINE(LINE(1, 3), LINE(1, 6));          MOVLINE(LINE(1, 3), LINE(1, 6));
593          MOVLINE(LINE(1, 6), LINE(3, 4));          MOVLINE(LINE(1, 6), LINE(3, 4));
594          MOVLINE(LINE(3, 4), LINE(3, 1));          MOVLINE(LINE(3, 4), LINE(3, 1));
595          MOVLINE(LINE(3, 1), tmp);          MOVLINE(LINE(3, 1), tmp);
596    
597          // 5=10, 10=5          /* 5=10, 10=5 */
598          MOVLINE(tmp, LINE(1, 5));          MOVLINE(tmp, LINE(1, 5));
599          MOVLINE(LINE(1, 5), LINE(3, 2));          MOVLINE(LINE(1, 5), LINE(3, 2));
600          MOVLINE(LINE(3, 2), tmp);          MOVLINE(LINE(3, 2), tmp);
601    
602          // 7=14, 14=13, 13=11, 11=7          /* 7=14, 14=13, 13=11, 11=7 */
603          MOVLINE(tmp, LINE(1, 7));          MOVLINE(tmp, LINE(1, 7));
604          MOVLINE(LINE(1, 7), LINE(3, 6));          MOVLINE(LINE(1, 7), LINE(3, 6));
605          MOVLINE(LINE(3, 6), LINE(3, 5));          MOVLINE(LINE(3, 6), LINE(3, 5));
# Line 601  Line 607 
607          MOVLINE(LINE(3, 3), tmp);          MOVLINE(LINE(3, 3), tmp);
608  }  }
609    
610    /*****************************************************************************
611     *               Trellis based R-D optimal quantization
612     *
613     *   Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net
614     *
615     ****************************************************************************/
616    
617    /*----------------------------------------------------------------------------
618     *
619     *        Trellis-Based quantization
620     *
621     * So far I understand this paper:
622     *
623     *  "Trellis-Based R-D Optimal Quantization in H.263+"
624     *    J.Wen, M.Luttrell, J.Villasenor
625     *    IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000.
626     *
627     * we are at stake with a simplified Bellmand-Ford / Dijkstra Single
628     * Source Shortest Path algo. But due to the underlying graph structure
629     * ("Trellis"), it can be turned into a dynamic programming algo,
630     * partially saving the explicit graph's nodes representation. And
631     * without using a heap, since the open frontier of the DAG is always
632     * known, and of fixed size.
633     *--------------------------------------------------------------------------*/
634    
635    
636    
637  /************************************************************************  /* Codes lengths for relevant levels. */
  *               Trellis based R-D optimal quantization                 *  
  *                                                                      *  
  *   Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net  *  
  *                                                                      *  
  ************************************************************************/  
   
   
 static int  
 dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q,  
                 const uint16_t * const Zigzag, int Non_Zero)  
 { return 63; }  
   
   
 //////////////////////////////////////////////////////////  
 //  
 //        Trellis-Based quantization  
 //  
 // So far I understand this paper:  
 //  
 //  "Trellis-Based R-D Optimal Quantization in H.263+"  
 //    J.Wen, M.Luttrell, J.Villasenor  
 //    IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000.  
 //  
 // we are at stake with a simplified Bellmand-Ford / Dijkstra Single  
 // Source Shorted Path algo. But due to the underlying graph structure  
 // ("Trellis"), it can be turned into a dynamic programming algo,  
 // partially saving the explicit graph's nodes representation. And  
 // without using a heap, since the open frontier of the DAG is always  
 // known, and of fixed sized.  
 //  
 //////////////////////////////////////////////////////////  
   
   
 //////////////////////////////////////////////////////////  
 // Codes lengths for relevant levels.  
638    
639    // let's factorize:  /* let's factorize: */
640  static const uint8_t Code_Len0[64] = {  static const uint8_t Code_Len0[64] = {
641    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,
642    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 };    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 };
# Line 707  Line 701 
701     3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15,     3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15,
702    15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 };    15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 };
703    
704    // a few more table for LAST table:  /* a few more table for LAST table: */
705  static const uint8_t Code_Len21[64] = {  static const uint8_t Code_Len21[64] = {
706    13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,    13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,
707    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30};    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30};
# Line 722  Line 716 
716    12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19};    12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19};
717    
718    
719  static const uint8_t * const B16_17_Code_Len[24] = { // levels [1..24]  static const uint8_t * const B16_17_Code_Len[24] = { /* levels [1..24] */
720    Code_Len20,Code_Len19,Code_Len18,Code_Len17,    Code_Len20,Code_Len19,Code_Len18,Code_Len17,
721    Code_Len16,Code_Len15,Code_Len14,Code_Len13,    Code_Len16,Code_Len15,Code_Len14,Code_Len13,
722    Code_Len12,Code_Len11,Code_Len10,Code_Len9,    Code_Len12,Code_Len11,Code_Len10,Code_Len9,
# Line 731  Line 725 
725    Code_Len2, Code_Len1, Code_Len1, Code_Len1,    Code_Len2, Code_Len1, Code_Len1, Code_Len1,
726  };  };
727    
728  static const uint8_t * const B16_17_Code_Len_Last[6] = { // levels [1..6]  static const uint8_t * const B16_17_Code_Len_Last[6] = { /* levels [1..6] */
729    Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1,    Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1,
730  };  };
731    
732  #define TL(q) 0xfe00/(q*q)  /* TL_SHIFT controls the precision of the RD optimizations in trellis
733     * valid range is [10..16]. The bigger, the more trellis is vulnerable
734     * to overflows in cost formulas.
735     *  - 10 allows ac values up to 2^11 == 2048
736     *  - 16 allows ac values up to 2^8 == 256
737     */
738    #define TL_SHIFT 11
739    #define TL(q) ((0xfe00>>(16-TL_SHIFT))/(q*q))
740    
741  static const int Trellis_Lambda_Tabs[31] = {  static const int Trellis_Lambda_Tabs[31] = {
742           TL( 1),TL( 2),TL( 3),TL( 4),TL( 5),TL( 6), TL( 7),           TL( 1),TL( 2),TL( 3),TL( 4),TL( 5),TL( 6), TL( 7),
# Line 745  Line 746 
746  };  };
747  #undef TL  #undef TL
748    
749  static __inline int Find_Last(const int16_t *C, const uint16_t *Zigzag, int i)  static int __inline
750    Find_Last(const int16_t *C, const uint16_t *Zigzag, int i)
751  {  {
752    while(i>=0)    while(i>=0)
753      if (C[Zigzag[i]])      if (C[Zigzag[i]])
# Line 754  Line 756 
756    return -1;    return -1;
757  }  }
758    
759  //////////////////////////////////////////////////////////  /* this routine has been strippen of all debug code */
 // this routine has been strippen of all debug code  
 //////////////////////////////////////////////////////////  
   
760  static int  static int
761  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)  dct_quantize_trellis_c(int16_t *const Out,
762                                               const int16_t *const In,
763                                               int Q,
764                                               const uint16_t * const Zigzag,
765                                               const uint16_t * const QuantMatrix,
766                                               int Non_Zero,
767                                               int Sum)
768  {  {
769    
770      // Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),          /* Note: We should search last non-zero coeffs on *real* DCT input coeffs
771      // not quantized one (Out[]). However, it only improves the result *very*           * (In[]), not quantized one (Out[]). However, it only improves the result
772      // slightly (~0.01dB), whereas speed drops to crawling level :)           * *very* slightly (~0.01dB), whereas speed drops to crawling level :)
773      // Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps,           * Well, actually, taking 1 more coeff past Non_Zero into account sometimes
774             * helps. */
775    typedef struct { int16_t Run, Level; } NODE;    typedef struct { int16_t Run, Level; } NODE;
776    
777    NODE Nodes[65], Last;    NODE Nodes[65], Last;
778    uint32_t Run_Costs0[64+1];    uint32_t Run_Costs0[64+1];
779    uint32_t * const Run_Costs = Run_Costs0 + 1;    uint32_t * const Run_Costs = Run_Costs0 + 1;
780    const int Mult = 2*Q;  
781    const int Bias = (Q-1) | 1;          /* it's 1/lambda, actually */
782    const int Lev0 = Mult + Bias;          const int Lambda = Trellis_Lambda_Tabs[Q-1];
   const int Lambda = Trellis_Lambda_Tabs[Q-1];    // it's 1/lambda, actually  
783    
784    int Run_Start = -1;    int Run_Start = -1;
785    uint32_t Min_Cost = 2<<16;          uint32_t Min_Cost = 2<<TL_SHIFT;
786    
787    int Last_Node = -1;    int Last_Node = -1;
788    uint32_t Last_Cost = 0;    uint32_t Last_Cost = 0;
789    
790    int i, j;    int i, j;
791    Run_Costs[-1] = 2<<16;                          // source (w/ CBP penalty)  
792            /* source (w/ CBP penalty) */
793            Run_Costs[-1] = 2<<TL_SHIFT;
794    
795    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);
796    if (Non_Zero<0)    if (Non_Zero<0)
797        return -1;                  return 0; /* Sum is zero if there are only zero coeffs */
798    
799            for(i=0; i<=Non_Zero; i++) {
800                    const int q = ((Q*QuantMatrix[Zigzag[i]])>>4);
801                    const int Mult = 2*q;
802                    const int Bias = (q-1) | 1;
803                    const int Lev0 = Mult + Bias;
804    
   for(i=0; i<=Non_Zero; i++)  
   {  
805      const int AC = In[Zigzag[i]];      const int AC = In[Zigzag[i]];
806      const int Level1 = Out[Zigzag[i]];      const int Level1 = Out[Zigzag[i]];
807      const int Dist0 = Lambda* AC*AC;                  const unsigned int Dist0 = Lambda* AC*AC;
808      uint32_t Best_Cost = 0xf0000000;      uint32_t Best_Cost = 0xf0000000;
809      Last_Cost += Dist0;      Last_Cost += Dist0;
810    
811      if ((uint32_t)(Level1+1)<3)                 // very specialized loop for -1,0,+1                  /* very specialized loop for -1,0,+1 */
812      {                  if ((uint32_t)(Level1+1)<3) {
813          int dQ;          int dQ;
814                  int Run;                  int Run;
815        uint32_t Cost0;        uint32_t Cost0;
# Line 814  Line 824 
824                  Cost0 = Lambda*dQ*dQ;                  Cost0 = Lambda*dQ*dQ;
825    
826        Nodes[i].Run = 1;        Nodes[i].Run = 1;
827        Best_Cost = (Code_Len20[0]<<16) + Run_Costs[i-1]+Cost0;                          Best_Cost = (Code_Len20[0]<<TL_SHIFT) + Run_Costs[i-1]+Cost0;
828        for(Run=i-Run_Start; Run>0; --Run)                          for(Run=i-Run_Start; Run>0; --Run) {
       {  
829          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];
830          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);                                  const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<TL_SHIFT);
831          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);                                  const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<TL_SHIFT);
832    
833            // TODO: what about tie-breaks? Should we favor short runs or                                  /* TODO: what about tie-breaks? Should we favor short runs or
834            // long runs? Although the error is the same, it would not be                                   * long runs? Although the error is the same, it would not be
835            // spread the same way along high and low frequencies...                                   * spread the same way along high and low frequencies... */
836    
837                          // (I'd say: favour short runs => hifreq errors (HVS) -- gruel )                                  /* Gruel: I'd say, favour short runs => hifreq errors (HVS) */
838    
839          if (Cost<Best_Cost) {          if (Cost<Best_Cost) {
840            Best_Cost    = Cost;            Best_Cost    = Cost;
# Line 840  Line 849 
849        }        }
850        if (Last_Node==i)        if (Last_Node==i)
851                          Last.Level = Nodes[i].Level;                          Last.Level = Nodes[i].Level;
852      }                  } else if (51U>(uint32_t)(Level1+25)) {
853      else                      // "big" levels                          /* "big" levels (not less than ESC3, though) */
     {  
854        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;
855        int Level2;        int Level2;
856        int dQ1, dQ2;        int dQ1, dQ2;
# Line 858  Line 866 
866          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;
867          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;
868          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;
869        } else { // Level1<-1                          } else { /* Level1<-1 */
870          dQ1 = Level1*Mult-AC - Bias;          dQ1 = Level1*Mult-AC - Bias;
871          dQ2 = dQ1 + Mult;          dQ2 = dQ1 + Mult;
872          Level2 = Level1 + 1;          Level2 = Level1 + 1;
# Line 867  Line 875 
875          Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0;          Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0;
876          Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0;          Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0;
877        }        }
878    
879        Dist1 = Lambda*dQ1*dQ1;        Dist1 = Lambda*dQ1*dQ1;
880        Dist2 = Lambda*dQ2*dQ2;        Dist2 = Lambda*dQ2*dQ2;
881        dDist21 = Dist2-Dist1;        dDist21 = Dist2-Dist1;
# Line 877  Line 886 
886          uint32_t Cost1, Cost2;          uint32_t Cost1, Cost2;
887          int bLevel;          int bLevel;
888    
889  // for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:                                  /* for sub-optimal (but slightly worth it, speed-wise) search,
890  //        if (Cost_Base>=Best_Cost) continue;                                   * uncomment the following:
891  // (? doesn't seem to have any effect -- gruel )                                   *              if (Cost_Base>=Best_Cost) continue;
892                                     * (? doesn't seem to have any effect -- gruel ) */
893    
894          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);                                  Cost1 = Cost_Base + (Tbl_L1[Run-1]<<TL_SHIFT);
895          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;                                  Cost2 = Cost_Base + (Tbl_L2[Run-1]<<TL_SHIFT) + dDist21;
896    
897          if (Cost2<Cost1) {          if (Cost2<Cost1) {
898                           Cost1 = Cost2;                           Cost1 = Cost2;
899                           bLevel = Level2;                           bLevel = Level2;
900                    } else                                  } else {
901                           bLevel = Level1;                           bLevel = Level1;
902                                    }
903    
904          if (Cost1<Best_Cost) {          if (Cost1<Best_Cost) {
905            Best_Cost = Cost1;            Best_Cost = Cost1;
# Line 896  Line 907 
907            Nodes[i].Level = bLevel;            Nodes[i].Level = bLevel;
908          }          }
909    
910          Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<16);                                  Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<TL_SHIFT);
911          Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<16) + dDist21;                                  Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<TL_SHIFT) + dDist21;
912    
913          if (Cost2<Cost1) {          if (Cost2<Cost1) {
914                           Cost1 = Cost2;                           Cost1 = Cost2;
915                           bLevel = Level2;                           bLevel = Level2;
916                    } else                                  } else {
917                           bLevel = Level1;                           bLevel = Level1;
918                                    }
919    
920          if (Cost1<Last_Cost) {          if (Cost1<Last_Cost) {
921            Last_Cost  = Cost1;            Last_Cost  = Cost1;
# Line 911  Line 923 
923            Last.Level = bLevel;            Last.Level = bLevel;
924            Last_Node  = i;            Last_Node  = i;
925          }          }
926        } //end of "for Run"                          } /* end of "for Run" */
927                    } else {
928                            /* Very very high levels, with no chance of being optimizable
929                             * => Simply pick best Run. */
930                            int Run;
931                            for(Run=i-Run_Start; Run>0; --Run) {
932                                    /* 30 bits + no distortion */
933                                    const uint32_t Cost = (30<<TL_SHIFT) + Run_Costs[i-Run];
934                                    if (Cost<Best_Cost) {
935                                            Best_Cost = Cost;
936                                            Nodes[i].Run   = Run;
937                                            Nodes[i].Level = Level1;
938                                    }
939    
940                                    if (Cost<Last_Cost) {
941                                            Last_Cost  = Cost;
942                                            Last.Run   = Run;
943                                            Last.Level = Level1;
944                                            Last_Node  = i;
945                                    }
946      }      }
947                    }
948    
949    
950      Run_Costs[i] = Best_Cost;      Run_Costs[i] = Best_Cost;
951    
952      if (Best_Cost < Min_Cost + Dist0) {      if (Best_Cost < Min_Cost + Dist0) {
953        Min_Cost = Best_Cost;        Min_Cost = Best_Cost;
954        Run_Start = i;        Run_Start = i;
955      }                  } else {
956      else                          /* as noticed by Michael Niedermayer (michaelni at gmx.at),
957      {                           * there's a code shorter by 1 bit for a larger run (!), same
958          // as noticed by Michael Niedermayer (michaelni at gmx.at), there's                           * level. We give it a chance by not moving the left barrier too
959          // a code shorter by 1 bit for a larger run (!), same level. We give                           * much. */
960          // it a chance by not moving the left barrier too much.                          while( Run_Costs[Run_Start]>Min_Cost+(1<<TL_SHIFT) )
   
       while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )  
961          Run_Start++;          Run_Start++;
962    
963          // spread on preceding coeffs the cost incurred by skipping this one                          /* spread on preceding coeffs the cost incurred by skipping this
964                             * one */
965        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;
966        Min_Cost += Dist0;        Min_Cost += Dist0;
967      }      }
968    }    }
969    
970            /* It seems trellis doesn't give good results... just leave the block untouched
971             * and return the original sum value */
972    if (Last_Node<0)    if (Last_Node<0)
973      return -1;                  return Sum;
974    
975         // reconstruct optimal sequence backward with surviving paths          /* reconstruct optimal sequence backward with surviving paths */
976    memset(Out, 0x00, 64*sizeof(*Out));    memset(Out, 0x00, 64*sizeof(*Out));
977    Out[Zigzag[Last_Node]] = Last.Level;    Out[Zigzag[Last_Node]] = Last.Level;
978    i = Last_Node - Last.Run;    i = Last_Node - Last.Run;
979            Sum = abs(Last.Level);
980    while(i>=0) {    while(i>=0) {
981      Out[Zigzag[i]] = Nodes[i].Level;      Out[Zigzag[i]] = Nodes[i].Level;
982                    Sum += abs(Nodes[i].Level);
983      i -= Nodes[i].Run;      i -= Nodes[i].Run;
984    }    }
   return Last_Node;  
 }  
   
   
985    
986            return Sum;
987    }
988    
989    /* original version including heavy debugging info */
   
   
   
   
   
   
 //////////////////////////////////////////////////////////  
 // original version including heavy debugging info  
 //////////////////////////////////////////////////////////  
   
990    
991  #ifdef DBGTRELL  #ifdef DBGTRELL
992    
# Line 987  Line 1010 
1010      int j=0, j0=0;      int j=0, j0=0;
1011      int Run, Level;      int Run, Level;
1012    
1013      Bits = 2;   // CBP                  Bits = 2;   /* CBP */
1014      while(j<Last) {      while(j<Last) {
1015        while(!C[Zigzag[j]])        while(!C[Zigzag[j]])
1016                          j++;                          j++;
# Line 1019  Line 1042 
1042      V -= Ref[Zigzag[i]];      V -= Ref[Zigzag[i]];
1043      Dist += V*V;      Dist += V*V;
1044    }    }
1045    Cost = Lambda*Dist + (Bits<<16);          Cost = Lambda*Dist + (Bits<<TL_SHIFT);
1046    if (DBG==1)    if (DBG==1)
1047      printf( " Last:%2d/%2d Cost = [(Bits=%5.0d) + Lambda*(Dist=%6.0d) = %d ] >>12= %d ", Last,Max, Bits, Dist, Cost, Cost>>12 );      printf( " Last:%2d/%2d Cost = [(Bits=%5.0d) + Lambda*(Dist=%6.0d) = %d ] >>12= %d ", Last,Max, Bits, Dist, Cost, Cost>>12 );
1048    return Cost;    return Cost;
# Line 1034  Line 1057 
1057  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)
1058  {  {
1059    
1060      // Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),      /*
1061      // not quantized one (Out[]). However, it only improves the result *very*           * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),
1062      // slightly (~0.01dB), whereas speed drops to crawling level :)           * not quantized one (Out[]). However, it only improves the result *very*
1063      // Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps,           * slightly (~0.01dB), whereas speed drops to crawling level :)
1064             * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps.
1065             */
1066    typedef struct { int16_t Run, Level; } NODE;    typedef struct { int16_t Run, Level; } NODE;
1067    
1068    NODE Nodes[65], Last;    NODE Nodes[65], Last;
# Line 1047  Line 1071 
1071    const int Mult = 2*Q;    const int Mult = 2*Q;
1072    const int Bias = (Q-1) | 1;    const int Bias = (Q-1) | 1;
1073    const int Lev0 = Mult + Bias;    const int Lev0 = Mult + Bias;
1074    const int Lambda = Trellis_Lambda_Tabs[Q-1];    // it's 1/lambda, actually          const int Lambda = Trellis_Lambda_Tabs[Q-1];    /* it's 1/lambda, actually */
1075    
1076    int Run_Start = -1;    int Run_Start = -1;
1077    Run_Costs[-1] = 2<<16;                          // source (w/ CBP penalty)          Run_Costs[-1] = 2<<TL_SHIFT;                          /* source (w/ CBP penalty) */
1078    uint32_t Min_Cost = 2<<16;          uint32_t Min_Cost = 2<<TL_SHIFT;
1079    
1080    int Last_Node = -1;    int Last_Node = -1;
1081    uint32_t Last_Cost = 0;    uint32_t Last_Cost = 0;
# Line 1059  Line 1083 
1083    int i, j;    int i, j;
1084    
1085  #if (DBG>0)  #if (DBG>0)
1086    Last.Level = 0; Last.Run = -1; // just initialize to smthg          Last.Level = 0; Last.Run = -1; /* just initialize to smthg */
1087  #endif  #endif
1088    
1089    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);
# Line 1074  Line 1098 
1098      uint32_t Best_Cost = 0xf0000000;      uint32_t Best_Cost = 0xf0000000;
1099      Last_Cost += Dist0;      Last_Cost += Dist0;
1100    
1101      if ((uint32_t)(Level1+1)<3)                 // very specialized loop for -1,0,+1                  if ((uint32_t)(Level1+1)<3)                 /* very specialized loop for -1,0,+1 */
1102      {      {
1103          int dQ;          int dQ;
1104                  int Run;                  int Run;
# Line 1090  Line 1114 
1114                  Cost0 = Lambda*dQ*dQ;                  Cost0 = Lambda*dQ*dQ;
1115    
1116        Nodes[i].Run = 1;        Nodes[i].Run = 1;
1117        Best_Cost = (Code_Len20[0]<<16) + Run_Costs[i-1]+Cost0;                          Best_Cost = (Code_Len20[0]<<TL_SHIFT) + Run_Costs[i-1]+Cost0;
1118        for(Run=i-Run_Start; Run>0; --Run)        for(Run=i-Run_Start; Run>0; --Run)
1119        {        {
1120          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];
1121          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);                                  const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<TL_SHIFT);
1122          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);                                  const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<TL_SHIFT);
1123    
1124            // TODO: what about tie-breaks? Should we favor short runs or                                  /*
1125            // long runs? Although the error is the same, it would not be                                   * TODO: what about tie-breaks? Should we favor short runs or
1126            // spread the same way along high and low frequencies...                                   * long runs? Although the error is the same, it would not be
1127                                     * spread the same way along high and low frequencies...
1128                                     */
1129          if (Cost<Best_Cost) {          if (Cost<Best_Cost) {
1130            Best_Cost    = Cost;            Best_Cost    = Cost;
1131            Nodes[i].Run = Run;            Nodes[i].Run = Run;
# Line 1129  Line 1155 
1155          printf( "\n" );          printf( "\n" );
1156        }        }
1157      }      }
1158      else                      // "big" levels                  else                      /* "big" levels */
1159      {      {
1160        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;
1161        int Level2;        int Level2;
# Line 1146  Line 1172 
1172          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;
1173          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;
1174          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;
1175        } else { // Level1<-1                          } else { /* Level1<-1 */
1176          dQ1 = Level1*Mult-AC - Bias;          dQ1 = Level1*Mult-AC - Bias;
1177          dQ2 = dQ1 + Mult;          dQ2 = dQ1 + Mult;
1178          Level2 = Level1 + 1;          Level2 = Level1 + 1;
# Line 1165  Line 1191 
1191          uint32_t Cost1, Cost2;          uint32_t Cost1, Cost2;
1192          int bLevel;          int bLevel;
1193    
1194  // for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:  /*
1195  //        if (Cost_Base>=Best_Cost) continue;   * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:
1196     *        if (Cost_Base>=Best_Cost) continue;
1197          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);   */
1198          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;                                  Cost1 = Cost_Base + (Tbl_L1[Run-1]<<TL_SHIFT);
1199                                    Cost2 = Cost_Base + (Tbl_L2[Run-1]<<TL_SHIFT) + dDist21;
1200    
1201          if (Cost2<Cost1) {          if (Cost2<Cost1) {
1202                           Cost1 = Cost2;                           Cost1 = Cost2;
# Line 1183  Line 1210 
1210            Nodes[i].Level = bLevel;            Nodes[i].Level = bLevel;
1211          }          }
1212    
1213          Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<16);                                  Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<TL_SHIFT);
1214          Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<16) + dDist21;                                  Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<TL_SHIFT) + dDist21;
1215    
1216          if (Cost2<Cost1) {          if (Cost2<Cost1) {
1217                           Cost1 = Cost2;                           Cost1 = Cost2;
# Line 1198  Line 1225 
1225            Last.Level = bLevel;            Last.Level = bLevel;
1226            Last_Node  = i;            Last_Node  = i;
1227          }          }
1228        } //end of "for Run"                          } /* end of "for Run" */
1229    
1230        if (DBG==1) {        if (DBG==1) {
1231          Run_Costs[i] = Best_Cost;          Run_Costs[i] = Best_Cost;
# Line 1224  Line 1251 
1251      }      }
1252      else      else
1253      {      {
1254          // as noticed by Michael Niedermayer (michaelni at gmx.at), there's                          /*
1255          // a code shorter by 1 bit for a larger run (!), same level. We give                           * as noticed by Michael Niedermayer (michaelni at gmx.at), there's
1256          // it a chance by not moving the left barrier too much.                           * a code shorter by 1 bit for a larger run (!), same level. We give
1257                             * it a chance by not moving the left barrier too much.
1258                             */
1259    
1260        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )                          while( Run_Costs[Run_Start]>Min_Cost+(1<<TL_SHIFT) )
1261          Run_Start++;          Run_Start++;
1262    
1263          // spread on preceding coeffs the cost incurred by skipping this one                          /* spread on preceding coeffs the cost incurred by skipping this one */
1264        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;
1265        Min_Cost += Dist0;        Min_Cost += Dist0;
1266      }      }
# Line 1249  Line 1278 
1278    if (Last_Node<0)    if (Last_Node<0)
1279      return -1;      return -1;
1280    
1281         // reconstruct optimal sequence backward with surviving paths          /* reconstruct optimal sequence backward with surviving paths */
1282    memset(Out, 0x00, 64*sizeof(*Out));    memset(Out, 0x00, 64*sizeof(*Out));
1283    Out[Zigzag[Last_Node]] = Last.Level;    Out[Zigzag[Last_Node]] = Last.Level;
1284    i = Last_Node - Last.Run;    i = Last_Node - Last.Run;

Legend:
Removed from v.1.21.2.12  
changed lines
  Added in v.1.27

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4