[cvs] / xvidcore / src / utils / mbtransquant.c Repository:
ViewVC logotype

Diff of /xvidcore/src/utils/mbtransquant.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.21.2.11, Sun May 11 13:26:14 2003 UTC revision 1.21.2.19, Sun Nov 23 17:01:08 2003 UTC
# Line 39  Line 39 
39  #include "../bitstream/zigzag.h"  #include "../bitstream/zigzag.h"
40  #include "../dct/fdct.h"  #include "../dct/fdct.h"
41  #include "../dct/idct.h"  #include "../dct/idct.h"
42  #include "../quant/quant_mpeg4.h"  #include "../quant/quant.h"
 #include "../quant/quant_h263.h"  
43  #include "../encoder.h"  #include "../encoder.h"
44    
45  #include "../image/reduced.h"  #include "../image/reduced.h"
46    #include  "../quant/quant_matrix.h"
47    
48  MBFIELDTEST_PTR MBFieldTest;  MBFIELDTEST_PTR MBFieldTest;
49    
# Line 123  Line 123 
123                           int16_t qcoeff[6 * 64],                           int16_t qcoeff[6 * 64],
124                           int16_t data[6*64])                           int16_t data[6*64])
125  {  {
126          int i;          int mpeg;
127            int scaler_lum, scaler_chr;
128    
129          for (i = 0; i < 6; i++) {          quant_intraFuncPtr const quant[2] =
130                  uint32_t iDcScaler = get_dc_scaler(pMB->quant, i < 4);                  {
131                            quant_h263_intra,
132                            quant_mpeg_intra
133                    };
134    
135            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
136            scaler_lum = get_dc_scaler(pMB->quant, 1);
137            scaler_chr = get_dc_scaler(pMB->quant, 0);
138    
139                  /* Quantize the block */                  /* Quantize the block */
140                  start_timer();                  start_timer();
141                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT)) {          quant[mpeg](&data[0 * 64], &qcoeff[0 * 64], pMB->quant, scaler_lum);
142                          quant_intra(&data[i * 64], &qcoeff[i * 64], pMB->quant, iDcScaler);          quant[mpeg](&data[1 * 64], &qcoeff[1 * 64], pMB->quant, scaler_lum);
143                  } else {          quant[mpeg](&data[2 * 64], &qcoeff[2 * 64], pMB->quant, scaler_lum);
144                          quant4_intra(&data[i * 64], &qcoeff[i * 64], pMB->quant, iDcScaler);          quant[mpeg](&data[3 * 64], &qcoeff[3 * 64], pMB->quant, scaler_lum);
145                  }          quant[mpeg](&data[4 * 64], &qcoeff[4 * 64], pMB->quant, scaler_chr);
146            quant[mpeg](&data[5 * 64], &qcoeff[5 * 64], pMB->quant, scaler_chr);
147                  stop_quant_timer();                  stop_quant_timer();
148          }          }
 }  
149    
150  /* DeQuantize all blocks -- Intra mode */  /* DeQuantize all blocks -- Intra mode */
151  static __inline void  static __inline void
# Line 146  Line 154 
154                             int16_t qcoeff[6 * 64],                             int16_t qcoeff[6 * 64],
155                             int16_t data[6*64])                             int16_t data[6*64])
156  {  {
157          int i;          int mpeg;
158            int scaler_lum, scaler_chr;
159    
160          for (i = 0; i < 6; i++) {          quant_intraFuncPtr const dequant[2] =
161                  uint32_t iDcScaler = get_dc_scaler(iQuant, i < 4);                  {
162                            dequant_h263_intra,
163                            dequant_mpeg_intra
164                    };
165    
166            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
167            scaler_lum = get_dc_scaler(iQuant, 1);
168            scaler_chr = get_dc_scaler(iQuant, 0);
169    
170                  start_timer();                  start_timer();
171                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT))          dequant[mpeg](&qcoeff[0 * 64], &data[0 * 64], iQuant, scaler_lum);
172                          dequant_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);          dequant[mpeg](&qcoeff[1 * 64], &data[1 * 64], iQuant, scaler_lum);
173                  else          dequant[mpeg](&qcoeff[2 * 64], &data[2 * 64], iQuant, scaler_lum);
174                          dequant4_intra(&qcoeff[i * 64], &data[i * 64], iQuant, iDcScaler);          dequant[mpeg](&qcoeff[3 * 64], &data[3 * 64], iQuant, scaler_lum);
175            dequant[mpeg](&qcoeff[4 * 64], &data[4 * 64], iQuant, scaler_chr);
176            dequant[mpeg](&qcoeff[5 * 64], &data[5 * 64], iQuant, scaler_chr);
177                  stop_iquant_timer();                  stop_iquant_timer();
178          }          }
 }  
   
   
 static int  
 dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero);  
179    
180  static int  static int
181  dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero);  dct_quantize_trellis_c(int16_t *const Out,
182                                               const int16_t *const In,
183                                               int Q,
184                                               const uint16_t * const Zigzag,
185                                               const uint16_t * const QuantMatrix,
186                                               int Non_Zero);
187    
188  /* Quantize all blocks -- Inter mode */  /* Quantize all blocks -- Inter mode */
189  static __inline uint8_t  static __inline uint8_t
# Line 182  Line 199 
199          int i;          int i;
200          uint8_t cbp = 0;          uint8_t cbp = 0;
201          int sum;          int sum;
202          int code_block;          int code_block, mpeg;
203    
204            quant_interFuncPtr const quant[2] =
205                    {
206                            quant_h263_inter,
207                            quant_mpeg_inter
208                    };
209    
210            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
211    
212          for (i = 0; i < 6; i++) {          for (i = 0; i < 6; i++) {
213    
214                  /* Quantize the block */                  /* Quantize the block */
215                  start_timer();                  start_timer();
216                  if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT)) {  
217                          sum = quant_inter(&qcoeff[i*64], &data[i*64], pMB->quant);                  sum = quant[mpeg](&qcoeff[i*64], &data[i*64], pMB->quant);
218                          if ( (sum) && (frame->vop_flags & XVID_VOP_TRELLISQUANT) ) {  
219                                  sum = dct_quantize_trellis_h263_c(&qcoeff[i*64], &data[i*64], pMB->quant, &scan_tables[0][0], 63)+1;                  if(sum && (frame->vop_flags & XVID_VOP_TRELLISQUANT)) {
220                                  limit = 1;                          const static uint16_t h263matrix[] =
221                          }                                  {
222                  } else {                                          16, 16, 16, 16, 16, 16, 16, 16,
223                          sum = quant4_inter(&qcoeff[i * 64], &data[i * 64], pMB->quant);                                          16, 16, 16, 16, 16, 16, 16, 16,
224  //                      if ( (sum) && (frame->vop_flags & XVID_VOP_TRELLISQUANT) )                                          16, 16, 16, 16, 16, 16, 16, 16,
225  //                              sum = dct_quantize_trellis_mpeg_c (&qcoeff[i*64], &data[i*64], pMB->quant)+1;                                          16, 16, 16, 16, 16, 16, 16, 16,
226                                            16, 16, 16, 16, 16, 16, 16, 16,
227                                            16, 16, 16, 16, 16, 16, 16, 16,
228                                            16, 16, 16, 16, 16, 16, 16, 16,
229                                            16, 16, 16, 16, 16, 16, 16, 16
230                                    };
231                            sum = dct_quantize_trellis_c(&qcoeff[i*64], &data[i*64],
232                                                                                     pMB->quant, &scan_tables[0][0],
233                                                                                     (mpeg)?(uint16_t*)get_inter_matrix():h263matrix,
234                                                                                     63);
235                  }                  }
236                  stop_quant_timer();                  stop_quant_timer();
237    
# Line 236  Line 270 
270                             int16_t qcoeff[6 * 64],                             int16_t qcoeff[6 * 64],
271                             const uint8_t cbp)                             const uint8_t cbp)
272  {  {
273          int i;          int mpeg;
274    
275            quant_interFuncPtr const dequant[2] =
276                    {
277                            dequant_h263_inter,
278                            dequant_mpeg_inter
279                    };
280    
281            mpeg = !!(pParam->vol_flags & XVID_VOL_MPEGQUANT);
282    
         for (i = 0; i < 6; i++) {  
                 if (cbp & (1 << (5 - i))) {  
283                          start_timer();                          start_timer();
284                          if (!(pParam->vol_flags & XVID_VOL_MPEGQUANT))          if(cbp & (1 << (5 - 0))) dequant[mpeg](&data[0 * 64], &qcoeff[0 * 64], iQuant);
285                                  dequant_inter(&data[i * 64], &qcoeff[i * 64], iQuant);          if(cbp & (1 << (5 - 1))) dequant[mpeg](&data[1 * 64], &qcoeff[1 * 64], iQuant);
286                          else          if(cbp & (1 << (5 - 2))) dequant[mpeg](&data[2 * 64], &qcoeff[2 * 64], iQuant);
287                                  dequant4_inter(&data[i * 64], &qcoeff[i * 64], iQuant);          if(cbp & (1 << (5 - 3))) dequant[mpeg](&data[3 * 64], &qcoeff[3 * 64], iQuant);
288            if(cbp & (1 << (5 - 4))) dequant[mpeg](&data[4 * 64], &qcoeff[4 * 64], iQuant);
289            if(cbp & (1 << (5 - 5))) dequant[mpeg](&data[5 * 64], &qcoeff[5 * 64], iQuant);
290                          stop_iquant_timer();                          stop_iquant_timer();
291                  }                  }
         }  
 }  
292    
293  typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS);  typedef void (transfer_operation_8to16_t) (int16_t *Dst, const uint8_t *Src, int BpS);
294  typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS);  typedef void (transfer_operation_16to8_t) (uint8_t *Dst, const int16_t *Src, int BpS);
# Line 266  Line 306 
306          uint32_t stride2 = stride / 2;          uint32_t stride2 = stride / 2;
307          uint32_t next_block = stride * 8;          uint32_t next_block = stride * 8;
308          int32_t cst;          int32_t cst;
309            int vop_reduced;
310          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
311          const IMAGE * const pCurrent = &frame->image;          const IMAGE * const pCurrent = &frame->image;
312            transfer_operation_8to16_t * const functions[2] =
313                    {
314                            (transfer_operation_8to16_t *)transfer_8to16copy,
315                            (transfer_operation_8to16_t *)filter_18x18_to_8x8
316                    };
317          transfer_operation_8to16_t *transfer_op = NULL;          transfer_operation_8to16_t *transfer_op = NULL;
318    
319          if ((frame->vop_flags & XVID_VOP_REDUCED)) {          vop_reduced = !!(frame->vop_flags & XVID_VOP_REDUCED);
320    
321                  /* Image pointers */                  /* Image pointers */
322                  pY_Cur = pCurrent->y + (y_pos << 5) * stride  + (x_pos << 5);          pY_Cur = pCurrent->y + (y_pos << (4+vop_reduced)) * stride  + (x_pos << (4+vop_reduced));
323                  pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4);          pU_Cur = pCurrent->u + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
324                  pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4);          pV_Cur = pCurrent->v + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
325    
326                  /* Block size */                  /* Block size */
327                  cst = 16;          cst = 8<<vop_reduced;
328    
329                  /* Operation function */                  /* Operation function */
330                  transfer_op = (transfer_operation_8to16_t*)filter_18x18_to_8x8;          transfer_op = functions[vop_reduced];
         } else {  
   
                 /* Image pointers */  
                 pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);  
                 pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);  
                 pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);  
   
                 /* Block size */  
                 cst = 8;  
   
                 /* Operation function */  
                 transfer_op = (transfer_operation_8to16_t*)transfer_8to16copy;  
         }  
331    
332          /* Do the transfer */          /* Do the transfer */
333          start_timer();          start_timer();
# Line 314  Line 347 
347                           const uint32_t x_pos,                           const uint32_t x_pos,
348                           const uint32_t y_pos,                           const uint32_t y_pos,
349                           int16_t data[6 * 64],                           int16_t data[6 * 64],
350                           const uint32_t add,                           const uint32_t add, /* Must be 1 or 0 */
351                           const uint8_t cbp)                           const uint8_t cbp)
352  {  {
353          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;          uint8_t *pY_Cur, *pU_Cur, *pV_Cur;
# Line 322  Line 355 
355          uint32_t stride2 = stride / 2;          uint32_t stride2 = stride / 2;
356          uint32_t next_block = stride * 8;          uint32_t next_block = stride * 8;
357          uint32_t cst;          uint32_t cst;
358            int vop_reduced;
359          const IMAGE * const pCurrent = &frame->image;          const IMAGE * const pCurrent = &frame->image;
360    
361            /* Array of function pointers, indexed by [vop_reduced<<1+add] */
362            transfer_operation_16to8_t  * const functions[4] =
363                    {
364                            (transfer_operation_16to8_t*)transfer_16to8copy,
365                            (transfer_operation_16to8_t*)transfer_16to8add,
366                            (transfer_operation_16to8_t*)copy_upsampled_8x8_16to8,
367                            (transfer_operation_16to8_t*)add_upsampled_8x8_16to8
368                    };
369    
370          transfer_operation_16to8_t *transfer_op = NULL;          transfer_operation_16to8_t *transfer_op = NULL;
371    
372          if (pMB->field_dct) {          if (pMB->field_dct) {
# Line 330  Line 374 
374                  stride *= 2;                  stride *= 2;
375          }          }
376    
377          if ((frame->vop_flags & XVID_VOP_REDUCED)) {          /* Makes this vars booleans */
378            vop_reduced = !!(frame->vop_flags & XVID_VOP_REDUCED);
379    
380                  /* Image pointers */                  /* Image pointers */
381                  pY_Cur = pCurrent->y + (y_pos << 5) * stride  + (x_pos << 5);          pY_Cur = pCurrent->y + (y_pos << (4+vop_reduced)) * stride  + (x_pos << (4+vop_reduced));
382                  pU_Cur = pCurrent->u + (y_pos << 4) * stride2 + (x_pos << 4);          pU_Cur = pCurrent->u + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
383                  pV_Cur = pCurrent->v + (y_pos << 4) * stride2 + (x_pos << 4);          pV_Cur = pCurrent->v + (y_pos << (3+vop_reduced)) * stride2 + (x_pos << (3+vop_reduced));
384    
385                  /* Block size */                  /* Block size */
386                  cst = 16;          cst = 8<<vop_reduced;
387    
388                  /* Operation function */                  /* Operation function */
389                  if(add)          transfer_op = functions[(vop_reduced<<1) + add];
                         transfer_op = (transfer_operation_16to8_t*)add_upsampled_8x8_16to8;  
                 else  
                         transfer_op = (transfer_operation_16to8_t*)copy_upsampled_8x8_16to8;  
         } else {  
   
                 /* Image pointers */  
                 pY_Cur = pCurrent->y + (y_pos << 4) * stride  + (x_pos << 4);  
                 pU_Cur = pCurrent->u + (y_pos << 3) * stride2 + (x_pos << 3);  
                 pV_Cur = pCurrent->v + (y_pos << 3) * stride2 + (x_pos << 3);  
   
                 /* Block size */  
                 cst = 8;  
   
                 /* Operation function */  
                 if(add)  
                         transfer_op = (transfer_operation_16to8_t*)transfer_16to8add;  
                 else  
                         transfer_op = (transfer_operation_16to8_t*)transfer_16to8copy;  
         }  
390    
391          /* Do the operation */          /* Do the operation */
392          start_timer();          start_timer();
# Line 419  Line 445 
445          uint8_t cbp;          uint8_t cbp;
446          uint32_t limit;          uint32_t limit;
447    
448          /*          /* There is no MBTrans8to16 for Inter block, that's done in motion compensation
449           * There is no MBTrans8to16 for Inter block, that's done in motion compensation           * already */
          * already  
          */  
450    
451          /* Perform DCT (and field decision) */          /* Perform DCT (and field decision) */
452          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);
# Line 430  Line 454 
454          /* Set the limit threshold */          /* Set the limit threshold */
455          limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0);          limit = PVOP_TOOSMALL_LIMIT + ((pMB->quant == 1)? 1 : 0);
456    
457            if (frame->vop_flags & XVID_VOP_CARTOON)
458                    limit *= 3;
459    
460          /* Quantize the block */          /* Quantize the block */
461          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit);          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 0, limit);
462    
# Line 457  Line 484 
484          uint8_t cbp;          uint8_t cbp;
485          uint32_t limit;          uint32_t limit;
486    
487          /*          /* There is no MBTrans8to16 for Inter block, that's done in motion compensation
488           * There is no MBTrans8to16 for Inter block, that's done in motion compensation           * already */
          * already  
          */  
489    
490          /* Perform DCT (and field decision) */          /* Perform DCT (and field decision) */
491          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);          MBfDCT(pParam, frame, pMB, x_pos, y_pos, data);
# Line 468  Line 493 
493          /* Set the limit threshold */          /* Set the limit threshold */
494          limit = BVOP_TOOSMALL_LIMIT;          limit = BVOP_TOOSMALL_LIMIT;
495    
496            if (frame->vop_flags & XVID_VOP_CARTOON)
497                    limit *= 2;
498    
499          /* Quantize the block */          /* Quantize the block */
500          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit);          cbp = MBQuantInter(pParam, frame, pMB, data, qcoeff, 1, limit);
501    
# Line 475  Line 503 
503           * History comment:           * History comment:
504           * We don't have to DeQuant, iDCT and Transfer back data for B-frames.           * We don't have to DeQuant, iDCT and Transfer back data for B-frames.
505           *           *
506           * BUT some plugins require the original frame to be passed so we have           * BUT some plugins require the rebuilt original frame to be passed so we
507           * to take care of that here           * have to take care of that here
508           */           */
509          if((pParam->plugin_flags & XVID_REQORIGINAL)) {          if((pParam->plugin_flags & XVID_REQORIGINAL)) {
510    
# Line 546  Line 574 
574    
575          /* left blocks */          /* left blocks */
576    
577          // 1=2, 2=4, 4=8, 8=1          /* 1=2, 2=4, 4=8, 8=1 */
578          MOVLINE(tmp, LINE(0, 1));          MOVLINE(tmp, LINE(0, 1));
579          MOVLINE(LINE(0, 1), LINE(0, 2));          MOVLINE(LINE(0, 1), LINE(0, 2));
580          MOVLINE(LINE(0, 2), LINE(0, 4));          MOVLINE(LINE(0, 2), LINE(0, 4));
581          MOVLINE(LINE(0, 4), LINE(2, 0));          MOVLINE(LINE(0, 4), LINE(2, 0));
582          MOVLINE(LINE(2, 0), tmp);          MOVLINE(LINE(2, 0), tmp);
583    
584          // 3=6, 6=12, 12=9, 9=3          /* 3=6, 6=12, 12=9, 9=3 */
585          MOVLINE(tmp, LINE(0, 3));          MOVLINE(tmp, LINE(0, 3));
586          MOVLINE(LINE(0, 3), LINE(0, 6));          MOVLINE(LINE(0, 3), LINE(0, 6));
587          MOVLINE(LINE(0, 6), LINE(2, 4));          MOVLINE(LINE(0, 6), LINE(2, 4));
588          MOVLINE(LINE(2, 4), LINE(2, 1));          MOVLINE(LINE(2, 4), LINE(2, 1));
589          MOVLINE(LINE(2, 1), tmp);          MOVLINE(LINE(2, 1), tmp);
590    
591          // 5=10, 10=5          /* 5=10, 10=5 */
592          MOVLINE(tmp, LINE(0, 5));          MOVLINE(tmp, LINE(0, 5));
593          MOVLINE(LINE(0, 5), LINE(2, 2));          MOVLINE(LINE(0, 5), LINE(2, 2));
594          MOVLINE(LINE(2, 2), tmp);          MOVLINE(LINE(2, 2), tmp);
595    
596          // 7=14, 14=13, 13=11, 11=7          /* 7=14, 14=13, 13=11, 11=7 */
597          MOVLINE(tmp, LINE(0, 7));          MOVLINE(tmp, LINE(0, 7));
598          MOVLINE(LINE(0, 7), LINE(2, 6));          MOVLINE(LINE(0, 7), LINE(2, 6));
599          MOVLINE(LINE(2, 6), LINE(2, 5));          MOVLINE(LINE(2, 6), LINE(2, 5));
# Line 574  Line 602 
602    
603          /* right blocks */          /* right blocks */
604    
605          // 1=2, 2=4, 4=8, 8=1          /* 1=2, 2=4, 4=8, 8=1 */
606          MOVLINE(tmp, LINE(1, 1));          MOVLINE(tmp, LINE(1, 1));
607          MOVLINE(LINE(1, 1), LINE(1, 2));          MOVLINE(LINE(1, 1), LINE(1, 2));
608          MOVLINE(LINE(1, 2), LINE(1, 4));          MOVLINE(LINE(1, 2), LINE(1, 4));
609          MOVLINE(LINE(1, 4), LINE(3, 0));          MOVLINE(LINE(1, 4), LINE(3, 0));
610          MOVLINE(LINE(3, 0), tmp);          MOVLINE(LINE(3, 0), tmp);
611    
612          // 3=6, 6=12, 12=9, 9=3          /* 3=6, 6=12, 12=9, 9=3 */
613          MOVLINE(tmp, LINE(1, 3));          MOVLINE(tmp, LINE(1, 3));
614          MOVLINE(LINE(1, 3), LINE(1, 6));          MOVLINE(LINE(1, 3), LINE(1, 6));
615          MOVLINE(LINE(1, 6), LINE(3, 4));          MOVLINE(LINE(1, 6), LINE(3, 4));
616          MOVLINE(LINE(3, 4), LINE(3, 1));          MOVLINE(LINE(3, 4), LINE(3, 1));
617          MOVLINE(LINE(3, 1), tmp);          MOVLINE(LINE(3, 1), tmp);
618    
619          // 5=10, 10=5          /* 5=10, 10=5 */
620          MOVLINE(tmp, LINE(1, 5));          MOVLINE(tmp, LINE(1, 5));
621          MOVLINE(LINE(1, 5), LINE(3, 2));          MOVLINE(LINE(1, 5), LINE(3, 2));
622          MOVLINE(LINE(3, 2), tmp);          MOVLINE(LINE(3, 2), tmp);
623    
624          // 7=14, 14=13, 13=11, 11=7          /* 7=14, 14=13, 13=11, 11=7 */
625          MOVLINE(tmp, LINE(1, 7));          MOVLINE(tmp, LINE(1, 7));
626          MOVLINE(LINE(1, 7), LINE(3, 6));          MOVLINE(LINE(1, 7), LINE(3, 6));
627          MOVLINE(LINE(3, 6), LINE(3, 5));          MOVLINE(LINE(3, 6), LINE(3, 5));
# Line 601  Line 629 
629          MOVLINE(LINE(3, 3), tmp);          MOVLINE(LINE(3, 3), tmp);
630  }  }
631    
632    /*****************************************************************************
633     *               Trellis based R-D optimal quantization
634     *
635     *   Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net
636     *
637     ****************************************************************************/
638    
639    /*----------------------------------------------------------------------------
640     *
641     *        Trellis-Based quantization
642     *
643     * So far I understand this paper:
644     *
645     *  "Trellis-Based R-D Optimal Quantization in H.263+"
646     *    J.Wen, M.Luttrell, J.Villasenor
647     *    IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000.
648     *
649     * we are at stake with a simplified Bellmand-Ford / Dijkstra Single
650     * Source Shorted Path algo. But due to the underlying graph structure
651     * ("Trellis"), it can be turned into a dynamic programming algo,
652     * partially saving the explicit graph's nodes representation. And
653     * without using a heap, since the open frontier of the DAG is always
654     * known, and of fixed sized.
655     *--------------------------------------------------------------------------*/
656    
657    
658    
659  /************************************************************************  /* Codes lengths for relevant levels. */
  *               Trellis based R-D optimal quantization                 *  
  *                                                                      *  
  *   Trellis Quant code (C) 2003 Pascal Massimino skal(at)planet-d.net  *  
  *                                                                      *  
  ************************************************************************/  
   
   
 static int  
 dct_quantize_trellis_mpeg_c(int16_t *const Out, const int16_t *const In, int Q,  
                 const uint16_t * const Zigzag, int Non_Zero)  
 { return 63; }  
   
   
 //////////////////////////////////////////////////////////  
 //  
 //        Trellis-Based quantization  
 //  
 // So far I understand this paper:  
 //  
 //  "Trellis-Based R-D Optimal Quantization in H.263+"  
 //    J.Wen, M.Luttrell, J.Villasenor  
 //    IEEE Transactions on Image Processing, Vol.9, No.8, Aug. 2000.  
 //  
 // we are at stake with a simplified Bellmand-Ford / Dijkstra Single  
 // Source Shorted Path algo. But due to the underlying graph structure  
 // ("Trellis"), it can be turned into a dynamic programming algo,  
 // partially saving the explicit graph's nodes representation. And  
 // without using a heap, since the open frontier of the DAG is always  
 // known, and of fixed sized.  
 //  
 //////////////////////////////////////////////////////////  
   
   
 //////////////////////////////////////////////////////////  
 // Codes lengths for relevant levels.  
660    
661    // let's factorize:  /* let's factorize: */
662  static const uint8_t Code_Len0[64] = {  static const uint8_t Code_Len0[64] = {
663    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,
664    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 };    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30 };
# Line 707  Line 723 
723     3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15,     3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9,10,10,10,10,10,10,10,10,12,12,13,13,12,13,14,15,15,
724    15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 };    15,16,16,16,16,17,17,17,18,18,19,19,19,19,19,19,19,19,21,21,22,22,30,30,30,30,30,30,30,30,30,30 };
725    
726    // a few more table for LAST table:  /* a few more table for LAST table: */
727  static const uint8_t Code_Len21[64] = {  static const uint8_t Code_Len21[64] = {
728    13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,    13,20,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,
729    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30};    30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30};
# Line 722  Line 738 
738    12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19};    12,13,13,13,13,13,13,13,13,14,16,16,16,16,17,17,17,17,18,18,18,18,18,18,18,18,19,19,19,19,19,19};
739    
740    
741  static const uint8_t * const B16_17_Code_Len[24] = { // levels [1..24]  static const uint8_t * const B16_17_Code_Len[24] = { /* levels [1..24] */
742    Code_Len20,Code_Len19,Code_Len18,Code_Len17,    Code_Len20,Code_Len19,Code_Len18,Code_Len17,
743    Code_Len16,Code_Len15,Code_Len14,Code_Len13,    Code_Len16,Code_Len15,Code_Len14,Code_Len13,
744    Code_Len12,Code_Len11,Code_Len10,Code_Len9,    Code_Len12,Code_Len11,Code_Len10,Code_Len9,
# Line 731  Line 747 
747    Code_Len2, Code_Len1, Code_Len1, Code_Len1,    Code_Len2, Code_Len1, Code_Len1, Code_Len1,
748  };  };
749    
750  static const uint8_t * const B16_17_Code_Len_Last[6] = { // levels [1..6]  static const uint8_t * const B16_17_Code_Len_Last[6] = { /* levels [1..6] */
751    Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1,    Code_Len24,Code_Len23,Code_Len22,Code_Len21, Code_Len3, Code_Len1,
752  };  };
753    
754  #define TL(q) 0xfe00/(q*q)  /* TL_SHIFT controls the precision of the RD optimizations in trellis
755     * valid range is [10..16]. The bigger, the more trellis is vulnerable
756     * to overflows in cost formulas.
757     *  - 10 allows ac values up to 2^11 == 2048
758     *  - 16 allows ac values up to 2^8 == 256
759     */
760    #define TL_SHIFT 11
761    #define TL(q) ((0xfe00>>(16-TL_SHIFT))/(q*q))
762    
763  static const int Trellis_Lambda_Tabs[31] = {  static const int Trellis_Lambda_Tabs[31] = {
764           TL( 1),TL( 2),TL( 3),TL( 4),TL( 5),TL( 6), TL( 7),           TL( 1),TL( 2),TL( 3),TL( 4),TL( 5),TL( 6), TL( 7),
# Line 745  Line 768 
768  };  };
769  #undef TL  #undef TL
770    
771  static inline int Find_Last(const int16_t *C, const uint16_t *Zigzag, int i)  static int __inline
772    Find_Last(const int16_t *C, const uint16_t *Zigzag, int i)
773  {  {
774    while(i>=0)    while(i>=0)
775      if (C[Zigzag[i]])      if (C[Zigzag[i]])
# Line 754  Line 778 
778    return -1;    return -1;
779  }  }
780    
781  //////////////////////////////////////////////////////////  static int __inline
782  // this routine has been strippen of all debug code  Compute_Sum(const int16_t *C, int last)
783  //////////////////////////////////////////////////////////  {
784            int sum = 0;
785    
786            while(last--)
787                    sum += abs(C[last]);
788    
789            return(sum);
790    }
791    
792    /* this routine has been strippen of all debug code */
793  static int  static int
794  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)  dct_quantize_trellis_c(int16_t *const Out,
795                                               const int16_t *const In,
796                                               int Q,
797                                               const uint16_t * const Zigzag,
798                                               const uint16_t * const QuantMatrix,
799                                               int Non_Zero)
800  {  {
801    
802      // Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),      /*
803      // not quantized one (Out[]). However, it only improves the result *very*           * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),
804      // slightly (~0.01dB), whereas speed drops to crawling level :)           * not quantized one (Out[]). However, it only improves the result *very*
805      // Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps,           * slightly (~0.01dB), whereas speed drops to crawling level :)
806             * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps.
807             */
808    typedef struct { int16_t Run, Level; } NODE;    typedef struct { int16_t Run, Level; } NODE;
809    
810    NODE Nodes[65], Last;    NODE Nodes[65], Last;
811    uint32_t Run_Costs0[64+1];    uint32_t Run_Costs0[64+1];
812    uint32_t * const Run_Costs = Run_Costs0 + 1;    uint32_t * const Run_Costs = Run_Costs0 + 1;
813    const int Mult = 2*Q;  
814    const int Bias = (Q-1) | 1;          const int Lambda = Trellis_Lambda_Tabs[Q-1];    /* it's 1/lambda, actually */
   const int Lev0 = Mult + Bias;  
   const int Lambda = Trellis_Lambda_Tabs[Q-1];    // it's 1/lambda, actually  
815    
816    int Run_Start = -1;    int Run_Start = -1;
817    Run_Costs[-1] = 2<<16;                          // source (w/ CBP penalty)          uint32_t Min_Cost = 2<<TL_SHIFT;
   uint32_t Min_Cost = 2<<16;  
818    
819    int Last_Node = -1;    int Last_Node = -1;
820    uint32_t Last_Cost = 0;    uint32_t Last_Cost = 0;
821    
822    int i, j;          int i, j, sum;
823            Run_Costs[-1] = 2<<TL_SHIFT;                          /* source (w/ CBP penalty) */
824    
825    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);
826    if (Non_Zero<0)    if (Non_Zero<0)
827        return -1;                  return 0; /* Sum is zero if there are only zero coeffs */
828    
829            for(i=0; i<=Non_Zero; i++) {
830                    const int q = ((Q*QuantMatrix[Zigzag[i]])>>4);
831                    const int Mult = 2*q;
832                    const int Bias = (q-1) | 1;
833                    const int Lev0 = Mult + Bias;
834    
   for(i=0; i<=Non_Zero; i++)  
   {  
835      const int AC = In[Zigzag[i]];      const int AC = In[Zigzag[i]];
836      const int Level1 = Out[Zigzag[i]];      const int Level1 = Out[Zigzag[i]];
837      const int Dist0 = Lambda* AC*AC;                  const unsigned int Dist0 = Lambda* AC*AC;
838      uint32_t Best_Cost = 0xf0000000;      uint32_t Best_Cost = 0xf0000000;
839      Last_Cost += Dist0;      Last_Cost += Dist0;
840    
841      if ((uint32_t)(Level1+1)<3)                 // very specialized loop for -1,0,+1                  /* very specialized loop for -1,0,+1 */
842      {                  if ((uint32_t)(Level1+1)<3) {
843          int dQ;          int dQ;
844                  int Run;                  int Run;
845        uint32_t Cost0;        uint32_t Cost0;
# Line 814  Line 854 
854                  Cost0 = Lambda*dQ*dQ;                  Cost0 = Lambda*dQ*dQ;
855    
856        Nodes[i].Run = 1;        Nodes[i].Run = 1;
857        Best_Cost = (Code_Len20[0]<<16) + Run_Costs[i-1]+Cost0;                          Best_Cost = (Code_Len20[0]<<TL_SHIFT) + Run_Costs[i-1]+Cost0;
858        for(Run=i-Run_Start; Run>0; --Run)                          for(Run=i-Run_Start; Run>0; --Run) {
       {  
859          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];
860          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);                                  const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<TL_SHIFT);
861          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);                                  const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<TL_SHIFT);
862    
863            // TODO: what about tie-breaks? Should we favor short runs or                                  /*
864            // long runs? Although the error is the same, it would not be                                   * TODO: what about tie-breaks? Should we favor short runs or
865            // spread the same way along high and low frequencies...                                   * long runs? Although the error is the same, it would not be
866                                     * spread the same way along high and low frequencies...
867                                     */
868    
869                          // (I'd say: favour short runs => hifreq errors (HVS) -- gruel )                                  /* (I'd say: favour short runs => hifreq errors (HVS) -- gruel ) */
870    
871          if (Cost<Best_Cost) {          if (Cost<Best_Cost) {
872            Best_Cost    = Cost;            Best_Cost    = Cost;
# Line 840  Line 881 
881        }        }
882        if (Last_Node==i)        if (Last_Node==i)
883                          Last.Level = Nodes[i].Level;                          Last.Level = Nodes[i].Level;
884      }                  } else { /* "big" levels */
     else                      // "big" levels  
     {  
885        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;
886        int Level2;        int Level2;
887        int dQ1, dQ2;        int dQ1, dQ2;
# Line 858  Line 897 
897          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;
898          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;
899          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;
900        } else { // Level1<-1                          } else { /* Level1<-1 */
901          dQ1 = Level1*Mult-AC - Bias;          dQ1 = Level1*Mult-AC - Bias;
902          dQ2 = dQ1 + Mult;          dQ2 = dQ1 + Mult;
903          Level2 = Level1 + 1;          Level2 = Level1 + 1;
# Line 867  Line 906 
906          Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0;          Tbl_L1_Last = (Level1>=- 6) ? B16_17_Code_Len_Last[Level1^-1] : Code_Len0;
907          Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0;          Tbl_L2_Last = (Level2>=- 6) ? B16_17_Code_Len_Last[Level2^-1] : Code_Len0;
908        }        }
909    
910        Dist1 = Lambda*dQ1*dQ1;        Dist1 = Lambda*dQ1*dQ1;
911        Dist2 = Lambda*dQ2*dQ2;        Dist2 = Lambda*dQ2*dQ2;
912        dDist21 = Dist2-Dist1;        dDist21 = Dist2-Dist1;
# Line 877  Line 917 
917          uint32_t Cost1, Cost2;          uint32_t Cost1, Cost2;
918          int bLevel;          int bLevel;
919    
920  // for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:                                  /*
921  //        if (Cost_Base>=Best_Cost) continue;                                   * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:
922  // (? doesn't seem to have any effect -- gruel )                                   *      if (Cost_Base>=Best_Cost) continue;
923                                     * (? doesn't seem to have any effect -- gruel )
924                                     */
925    
926          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);                                  Cost1 = Cost_Base + (Tbl_L1[Run-1]<<TL_SHIFT);
927          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;                                  Cost2 = Cost_Base + (Tbl_L2[Run-1]<<TL_SHIFT) + dDist21;
928    
929          if (Cost2<Cost1) {          if (Cost2<Cost1) {
930                           Cost1 = Cost2;                           Cost1 = Cost2;
931                           bLevel = Level2;                           bLevel = Level2;
932                    } else                                  } else {
933                           bLevel = Level1;                           bLevel = Level1;
934                                    }
935    
936          if (Cost1<Best_Cost) {          if (Cost1<Best_Cost) {
937            Best_Cost = Cost1;            Best_Cost = Cost1;
# Line 896  Line 939 
939            Nodes[i].Level = bLevel;            Nodes[i].Level = bLevel;
940          }          }
941    
942          Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<16);                                  Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<TL_SHIFT);
943          Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<16) + dDist21;                                  Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<TL_SHIFT) + dDist21;
944    
945          if (Cost2<Cost1) {          if (Cost2<Cost1) {
946                           Cost1 = Cost2;                           Cost1 = Cost2;
947                           bLevel = Level2;                           bLevel = Level2;
948                    } else                                  } else {
949                           bLevel = Level1;                           bLevel = Level1;
950                                    }
951    
952          if (Cost1<Last_Cost) {          if (Cost1<Last_Cost) {
953            Last_Cost  = Cost1;            Last_Cost  = Cost1;
# Line 911  Line 955 
955            Last.Level = bLevel;            Last.Level = bLevel;
956            Last_Node  = i;            Last_Node  = i;
957          }          }
958        } //end of "for Run"                          } /* end of "for Run" */
959    
960      }      }
961    
# Line 920  Line 964 
964      if (Best_Cost < Min_Cost + Dist0) {      if (Best_Cost < Min_Cost + Dist0) {
965        Min_Cost = Best_Cost;        Min_Cost = Best_Cost;
966        Run_Start = i;        Run_Start = i;
967      }                  } else {
968      else                          /*
969      {                           * as noticed by Michael Niedermayer (michaelni at gmx.at), there's
970          // as noticed by Michael Niedermayer (michaelni at gmx.at), there's                           * a code shorter by 1 bit for a larger run (!), same level. We give
971          // a code shorter by 1 bit for a larger run (!), same level. We give                           * it a chance by not moving the left barrier too much.
972          // it a chance by not moving the left barrier too much.                           */
973    
974        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )                          while( Run_Costs[Run_Start]>Min_Cost+(1<<TL_SHIFT) )
975          Run_Start++;          Run_Start++;
976    
977          // spread on preceding coeffs the cost incurred by skipping this one                          /* spread on preceding coeffs the cost incurred by skipping this one */
978        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;
979        Min_Cost += Dist0;        Min_Cost += Dist0;
980      }      }
981    }    }
982    
983            /* It seems trellis doesn't give good results... just compute the Out sum and
984             * quit (even if we did not modify it, upperlayer relies on this data) */
985    if (Last_Node<0)    if (Last_Node<0)
986      return -1;                  return Compute_Sum(Out, Non_Zero);
987    
988         // reconstruct optimal sequence backward with surviving paths          /* reconstruct optimal sequence backward with surviving paths */
989    memset(Out, 0x00, 64*sizeof(*Out));    memset(Out, 0x00, 64*sizeof(*Out));
990    Out[Zigzag[Last_Node]] = Last.Level;    Out[Zigzag[Last_Node]] = Last.Level;
991    i = Last_Node - Last.Run;    i = Last_Node - Last.Run;
992            sum = 0;
993    while(i>=0) {    while(i>=0) {
994      Out[Zigzag[i]] = Nodes[i].Level;      Out[Zigzag[i]] = Nodes[i].Level;
995                    sum += abs(Nodes[i].Level);
996      i -= Nodes[i].Run;      i -= Nodes[i].Run;
997    }    }
   return Last_Node;  
 }  
   
   
   
998    
999            return sum;
1000    }
1001    
1002    /* original version including heavy debugging info */
   
   
   
   
   
 //////////////////////////////////////////////////////////  
 // original version including heavy debugging info  
 //////////////////////////////////////////////////////////  
   
1003    
1004  #ifdef DBGTRELL  #ifdef DBGTRELL
1005    
1006  #define DBG 0  #define DBG 0
1007    
1008  static inline uint32_t Evaluate_Cost(const int16_t *C, int Mult, int Bias,  static __inline uint32_t Evaluate_Cost(const int16_t *C, int Mult, int Bias,
1009                                  const uint16_t * Zigzag, int Max, int Lambda)                                  const uint16_t * Zigzag, int Max, int Lambda)
1010  {  {
1011  #if (DBG>0)  #if (DBG>0)
# Line 987  Line 1023 
1023      int j=0, j0=0;      int j=0, j0=0;
1024      int Run, Level;      int Run, Level;
1025    
1026      Bits = 2;   // CBP                  Bits = 2;   /* CBP */
1027      while(j<Last) {      while(j<Last) {
1028        while(!C[Zigzag[j]])        while(!C[Zigzag[j]])
1029                          j++;                          j++;
# Line 1019  Line 1055 
1055      V -= Ref[Zigzag[i]];      V -= Ref[Zigzag[i]];
1056      Dist += V*V;      Dist += V*V;
1057    }    }
1058    Cost = Lambda*Dist + (Bits<<16);          Cost = Lambda*Dist + (Bits<<TL_SHIFT);
1059    if (DBG==1)    if (DBG==1)
1060      printf( " Last:%2d/%2d Cost = [(Bits=%5.0d) + Lambda*(Dist=%6.0d) = %d ] >>12= %d ", Last,Max, Bits, Dist, Cost, Cost>>12 );      printf( " Last:%2d/%2d Cost = [(Bits=%5.0d) + Lambda*(Dist=%6.0d) = %d ] >>12= %d ", Last,Max, Bits, Dist, Cost, Cost>>12 );
1061    return Cost;    return Cost;
# Line 1034  Line 1070 
1070  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)  dct_quantize_trellis_h263_c(int16_t *const Out, const int16_t *const In, int Q, const uint16_t * const Zigzag, int Non_Zero)
1071  {  {
1072    
1073      // Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),      /*
1074      // not quantized one (Out[]). However, it only improves the result *very*           * Note: We should search last non-zero coeffs on *real* DCT input coeffs (In[]),
1075      // slightly (~0.01dB), whereas speed drops to crawling level :)           * not quantized one (Out[]). However, it only improves the result *very*
1076      // Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps,           * slightly (~0.01dB), whereas speed drops to crawling level :)
1077             * Well, actually, taking 1 more coeff past Non_Zero into account sometimes helps.
1078             */
1079    typedef struct { int16_t Run, Level; } NODE;    typedef struct { int16_t Run, Level; } NODE;
1080    
1081    NODE Nodes[65], Last;    NODE Nodes[65], Last;
# Line 1047  Line 1084 
1084    const int Mult = 2*Q;    const int Mult = 2*Q;
1085    const int Bias = (Q-1) | 1;    const int Bias = (Q-1) | 1;
1086    const int Lev0 = Mult + Bias;    const int Lev0 = Mult + Bias;
1087    const int Lambda = Trellis_Lambda_Tabs[Q-1];    // it's 1/lambda, actually          const int Lambda = Trellis_Lambda_Tabs[Q-1];    /* it's 1/lambda, actually */
1088    
1089    int Run_Start = -1;    int Run_Start = -1;
1090    Run_Costs[-1] = 2<<16;                          // source (w/ CBP penalty)          Run_Costs[-1] = 2<<TL_SHIFT;                          /* source (w/ CBP penalty) */
1091    uint32_t Min_Cost = 2<<16;          uint32_t Min_Cost = 2<<TL_SHIFT;
1092    
1093    int Last_Node = -1;    int Last_Node = -1;
1094    uint32_t Last_Cost = 0;    uint32_t Last_Cost = 0;
# Line 1059  Line 1096 
1096    int i, j;    int i, j;
1097    
1098  #if (DBG>0)  #if (DBG>0)
1099    Last.Level = 0; Last.Run = -1; // just initialize to smthg          Last.Level = 0; Last.Run = -1; /* just initialize to smthg */
1100  #endif  #endif
1101    
1102    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);    Non_Zero = Find_Last(Out, Zigzag, Non_Zero);
# Line 1074  Line 1111 
1111      uint32_t Best_Cost = 0xf0000000;      uint32_t Best_Cost = 0xf0000000;
1112      Last_Cost += Dist0;      Last_Cost += Dist0;
1113    
1114      if ((uint32_t)(Level1+1)<3)                 // very specialized loop for -1,0,+1                  if ((uint32_t)(Level1+1)<3)                 /* very specialized loop for -1,0,+1 */
1115      {      {
1116          int dQ;          int dQ;
1117                  int Run;                  int Run;
# Line 1090  Line 1127 
1127                  Cost0 = Lambda*dQ*dQ;                  Cost0 = Lambda*dQ*dQ;
1128    
1129        Nodes[i].Run = 1;        Nodes[i].Run = 1;
1130        Best_Cost = (Code_Len20[0]<<16) + Run_Costs[i-1]+Cost0;                          Best_Cost = (Code_Len20[0]<<TL_SHIFT) + Run_Costs[i-1]+Cost0;
1131        for(Run=i-Run_Start; Run>0; --Run)        for(Run=i-Run_Start; Run>0; --Run)
1132        {        {
1133          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];          const uint32_t Cost_Base = Cost0 + Run_Costs[i-Run];
1134          const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<16);                                  const uint32_t Cost = Cost_Base + (Code_Len20[Run-1]<<TL_SHIFT);
1135          const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<16);                                  const uint32_t lCost = Cost_Base + (Code_Len24[Run-1]<<TL_SHIFT);
1136    
1137            // TODO: what about tie-breaks? Should we favor short runs or                                  /*
1138            // long runs? Although the error is the same, it would not be                                   * TODO: what about tie-breaks? Should we favor short runs or
1139            // spread the same way along high and low frequencies...                                   * long runs? Although the error is the same, it would not be
1140                                     * spread the same way along high and low frequencies...
1141                                     */
1142          if (Cost<Best_Cost) {          if (Cost<Best_Cost) {
1143            Best_Cost    = Cost;            Best_Cost    = Cost;
1144            Nodes[i].Run = Run;            Nodes[i].Run = Run;
# Line 1129  Line 1168 
1168          printf( "\n" );          printf( "\n" );
1169        }        }
1170      }      }
1171      else                      // "big" levels                  else                      /* "big" levels */
1172      {      {
1173        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;        const uint8_t *Tbl_L1, *Tbl_L2, *Tbl_L1_Last, *Tbl_L2_Last;
1174        int Level2;        int Level2;
# Line 1146  Line 1185 
1185          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;          Tbl_L2      = (Level2<=24) ? B16_17_Code_Len[Level2-1]     : Code_Len0;
1186          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;          Tbl_L1_Last = (Level1<=6) ? B16_17_Code_Len_Last[Level1-1] : Code_Len0;
1187          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;          Tbl_L2_Last = (Level2<=6) ? B16_17_Code_Len_Last[Level2-1] : Code_Len0;
1188        } else { // Level1<-1                          } else { /* Level1<-1 */
1189          dQ1 = Level1*Mult-AC - Bias;          dQ1 = Level1*Mult-AC - Bias;
1190          dQ2 = dQ1 + Mult;          dQ2 = dQ1 + Mult;
1191          Level2 = Level1 + 1;          Level2 = Level1 + 1;
# Line 1165  Line 1204 
1204          uint32_t Cost1, Cost2;          uint32_t Cost1, Cost2;
1205          int bLevel;          int bLevel;
1206    
1207  // for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:  /*
1208  //        if (Cost_Base>=Best_Cost) continue;   * for sub-optimal (but slightly worth it, speed-wise) search, uncomment the following:
1209     *        if (Cost_Base>=Best_Cost) continue;
1210          Cost1 = Cost_Base + (Tbl_L1[Run-1]<<16);   */
1211          Cost2 = Cost_Base + (Tbl_L2[Run-1]<<16) + dDist21;                                  Cost1 = Cost_Base + (Tbl_L1[Run-1]<<TL_SHIFT);
1212                                    Cost2 = Cost_Base + (Tbl_L2[Run-1]<<TL_SHIFT) + dDist21;
1213    
1214          if (Cost2<Cost1) {          if (Cost2<Cost1) {
1215                           Cost1 = Cost2;                           Cost1 = Cost2;
# Line 1183  Line 1223 
1223            Nodes[i].Level = bLevel;            Nodes[i].Level = bLevel;
1224          }          }
1225    
1226          Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<16);                                  Cost1 = Cost_Base + (Tbl_L1_Last[Run-1]<<TL_SHIFT);
1227          Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<16) + dDist21;                                  Cost2 = Cost_Base + (Tbl_L2_Last[Run-1]<<TL_SHIFT) + dDist21;
1228    
1229          if (Cost2<Cost1) {          if (Cost2<Cost1) {
1230                           Cost1 = Cost2;                           Cost1 = Cost2;
# Line 1198  Line 1238 
1238            Last.Level = bLevel;            Last.Level = bLevel;
1239            Last_Node  = i;            Last_Node  = i;
1240          }          }
1241        } //end of "for Run"                          } /* end of "for Run" */
1242    
1243        if (DBG==1) {        if (DBG==1) {
1244          Run_Costs[i] = Best_Cost;          Run_Costs[i] = Best_Cost;
# Line 1224  Line 1264 
1264      }      }
1265      else      else
1266      {      {
1267          // as noticed by Michael Niedermayer (michaelni at gmx.at), there's                          /*
1268          // a code shorter by 1 bit for a larger run (!), same level. We give                           * as noticed by Michael Niedermayer (michaelni at gmx.at), there's
1269          // it a chance by not moving the left barrier too much.                           * a code shorter by 1 bit for a larger run (!), same level. We give
1270                             * it a chance by not moving the left barrier too much.
1271                             */
1272    
1273        while( Run_Costs[Run_Start]>Min_Cost+(1<<16) )                          while( Run_Costs[Run_Start]>Min_Cost+(1<<TL_SHIFT) )
1274          Run_Start++;          Run_Start++;
1275    
1276          // spread on preceding coeffs the cost incurred by skipping this one                          /* spread on preceding coeffs the cost incurred by skipping this one */
1277        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;        for(j=Run_Start; j<i; ++j) Run_Costs[j] += Dist0;
1278        Min_Cost += Dist0;        Min_Cost += Dist0;
1279      }      }
# Line 1249  Line 1291 
1291    if (Last_Node<0)    if (Last_Node<0)
1292      return -1;      return -1;
1293    
1294         // reconstruct optimal sequence backward with surviving paths          /* reconstruct optimal sequence backward with surviving paths */
1295    memset(Out, 0x00, 64*sizeof(*Out));    memset(Out, 0x00, 64*sizeof(*Out));
1296    Out[Zigzag[Last_Node]] = Last.Level;    Out[Zigzag[Last_Node]] = Last.Level;
1297    i = Last_Node - Last.Run;    i = Last_Node - Last.Run;

Legend:
Removed from v.1.21.2.11  
changed lines
  Added in v.1.21.2.19

No admin address has been configured
ViewVC Help
Powered by ViewVC 1.0.4