/***************************************************************************** * * XVID MPEG-4 VIDEO CODEC * - Native API implementation - * * This program is free software ; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation ; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY ; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program ; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: xvid.c,v 1.43 2003/02/19 21:13:00 edgomez Exp $ * ****************************************************************************/ #include #include #include #include #include "xvid.h" #include "decoder.h" #include "encoder.h" #include "bitstream/cbp.h" #include "dct/idct.h" #include "dct/fdct.h" #include "image/colorspace.h" #include "image/interpolate8x8.h" #include "image/reduced.h" #include "utils/mem_transfer.h" #include "utils/mbfunctions.h" #include "quant/quant_h263.h" #include "quant/quant_mpeg4.h" #include "motion/motion.h" #include "motion/sad.h" #include "utils/emms.h" #include "utils/timer.h" #include "bitstream/mbcoding.h" #if defined(ARCH_IS_IA32) #if defined(_MSC_VER) # include #else # include # include static jmp_buf mark; static void sigill_handler(int signal) { longjmp(mark, 1); } #endif /* * Calls the funcptr, and returns whether SIGILL (illegal instruction) was * signalled * * Return values: * -1 : could not determine * 0 : SIGILL was *not* signalled * 1 : SIGILL was signalled */ int sigill_check(void (*func)()) { #if defined(_MSC_VER) _try { func(); } _except(EXCEPTION_EXECUTE_HANDLER) { if (_exception_code() == STATUS_ILLEGAL_INSTRUCTION) return 1; } return 0; #else void * old_handler; int jmpret; old_handler = signal(SIGILL, sigill_handler); if (old_handler == SIG_ERR) { return -1; } jmpret = setjmp(mark); if (jmpret == 0) { func(); } signal(SIGILL, old_handler); return jmpret; #endif } #endif /* detect cpu flags */ static unsigned int detect_cpu_flags() { /* enable native assembly optimizations by default */ unsigned int cpu_flags = XVID_CPU_ASM; #if defined(ARCH_IS_IA32) cpu_flags |= check_cpu_features(); if ((cpu_flags & XVID_CPU_SSE) && sigill_check(sse_os_trigger)) cpu_flags &= ~XVID_CPU_SSE; if ((cpu_flags & XVID_CPU_SSE2) && sigill_check(sse2_os_trigger)) cpu_flags &= ~XVID_CPU_SSE2; #endif #if defined(ARCH_IS_PPC) #if defined(ARCH_IS_PPC_ALTIVEC) cpu_flags |= XVID_CPU_ALTIVEC; #endif #endif return cpu_flags; } /***************************************************************************** * XviD Init Entry point * * Well this function initialize all internal function pointers according * to the CPU features forced by the library client or autodetected (depending * on the XVID_CPU_FORCE flag). It also initializes vlc coding tables and all * image colorspace transformation tables. * * Returned value : XVID_ERR_OK * + API_VERSION in the input XVID_INIT_PARAM structure * + core build " " " " " * ****************************************************************************/ static int xvid_init_init(XVID_INIT_PARAM * init_param) { int cpu_flags; /* Inform the client the API version */ init_param->api_version = API_VERSION; /* Inform the client the core build - unused because we're still alpha */ init_param->core_build = 1000; /* Do we have to force CPU features ? */ if ((init_param->cpu_flags & XVID_CPU_FORCE)) { cpu_flags = init_param->cpu_flags; } else { cpu_flags = detect_cpu_flags(); } if ((init_param->cpu_flags & XVID_CPU_CHKONLY)) { init_param->cpu_flags = cpu_flags; return XVID_ERR_OK; } init_param->cpu_flags = cpu_flags; /* Initialize the function pointers */ idct_int32_init(); init_vlc_tables(); /* Fixed Point Forward/Inverse DCT transformations */ fdct = fdct_int32; idct = idct_int32; /* Only needed on PPC Altivec archs */ sadInit = 0; /* Restore FPU context : emms_c is a nop functions */ emms = emms_c; /* Quantization functions */ quant_intra = quant_intra_c; dequant_intra = dequant_intra_c; quant_inter = quant_inter_c; dequant_inter = dequant_inter_c; quant4_intra = quant4_intra_c; dequant4_intra = dequant4_intra_c; quant4_inter = quant4_inter_c; dequant4_inter = dequant4_inter_c; /* Block transfer related functions */ transfer_8to16copy = transfer_8to16copy_c; transfer_16to8copy = transfer_16to8copy_c; transfer_8to16sub = transfer_8to16sub_c; transfer_8to16subro = transfer_8to16subro_c; transfer_8to16sub2 = transfer_8to16sub2_c; transfer_16to8add = transfer_16to8add_c; transfer8x8_copy = transfer8x8_copy_c; /* Interlacing functions */ MBFieldTest = MBFieldTest_c; /* Image interpolation related functions */ interpolate8x8_halfpel_h = interpolate8x8_halfpel_h_c; interpolate8x8_halfpel_v = interpolate8x8_halfpel_v_c; interpolate8x8_halfpel_hv = interpolate8x8_halfpel_hv_c; interpolate16x16_lowpass_h = interpolate16x16_lowpass_h_c; interpolate16x16_lowpass_v = interpolate16x16_lowpass_v_c; interpolate16x16_lowpass_hv = interpolate16x16_lowpass_hv_c; interpolate8x8_lowpass_h = interpolate8x8_lowpass_h_c; interpolate8x8_lowpass_v = interpolate8x8_lowpass_v_c; interpolate8x8_lowpass_hv = interpolate8x8_lowpass_hv_c; interpolate8x8_6tap_lowpass_h = interpolate8x8_6tap_lowpass_h_c; interpolate8x8_6tap_lowpass_v = interpolate8x8_6tap_lowpass_v_c; interpolate8x8_avg2 = interpolate8x8_avg2_c; interpolate8x8_avg4 = interpolate8x8_avg4_c; /* reduced resoltuion */ copy_upsampled_8x8_16to8 = xvid_Copy_Upsampled_8x8_16To8_C; add_upsampled_8x8_16to8 = xvid_Add_Upsampled_8x8_16To8_C; vfilter_31 = xvid_VFilter_31_C; hfilter_31 = xvid_HFilter_31_C; filter_18x18_to_8x8 = xvid_Filter_18x18_To_8x8_C; filter_diff_18x18_to_8x8 = xvid_Filter_Diff_18x18_To_8x8_C; /* Initialize internal colorspace transformation tables */ colorspace_init(); /* All colorspace transformation functions User Format->YV12 */ yv12_to_yv12 = yv12_to_yv12_c; rgb555_to_yv12 = rgb555_to_yv12_c; rgb565_to_yv12 = rgb565_to_yv12_c; bgr_to_yv12 = bgr_to_yv12_c; bgra_to_yv12 = bgra_to_yv12_c; abgr_to_yv12 = abgr_to_yv12_c; rgba_to_yv12 = rgba_to_yv12_c; yuyv_to_yv12 = yuyv_to_yv12_c; uyvy_to_yv12 = uyvy_to_yv12_c; rgb555i_to_yv12 = rgb555i_to_yv12_c; rgb565i_to_yv12 = rgb565i_to_yv12_c; bgri_to_yv12 = bgri_to_yv12_c; bgrai_to_yv12 = bgrai_to_yv12_c; abgri_to_yv12 = abgri_to_yv12_c; rgbai_to_yv12 = rgbai_to_yv12_c; yuyvi_to_yv12 = yuyvi_to_yv12_c; uyvyi_to_yv12 = uyvyi_to_yv12_c; /* All colorspace transformation functions YV12->User format */ yv12_to_rgb555 = yv12_to_rgb555_c; yv12_to_rgb565 = yv12_to_rgb565_c; yv12_to_bgr = yv12_to_bgr_c; yv12_to_bgra = yv12_to_bgra_c; yv12_to_abgr = yv12_to_abgr_c; yv12_to_rgba = yv12_to_rgba_c; yv12_to_yuyv = yv12_to_yuyv_c; yv12_to_uyvy = yv12_to_uyvy_c; yv12_to_rgb555i = yv12_to_rgb555i_c; yv12_to_rgb565i = yv12_to_rgb565i_c; yv12_to_bgri = yv12_to_bgri_c; yv12_to_bgrai = yv12_to_bgrai_c; yv12_to_abgri = yv12_to_abgri_c; yv12_to_rgbai = yv12_to_rgbai_c; yv12_to_yuyvi = yv12_to_yuyvi_c; yv12_to_uyvyi = yv12_to_uyvyi_c; /* Functions used in motion estimation algorithms */ calc_cbp = calc_cbp_c; sad16 = sad16_c; sad8 = sad8_c; sad16bi = sad16bi_c; sad8bi = sad8bi_c; dev16 = dev16_c; sad16v = sad16v_c; /* Halfpel8_Refine = Halfpel8_Refine_c; */ #if defined(ARCH_IS_IA32) if ((cpu_flags & XVID_CPU_ASM)) { vfilter_31 = xvid_VFilter_31_x86; hfilter_31 = xvid_HFilter_31_x86; } if ((cpu_flags & XVID_CPU_MMX) || (cpu_flags & XVID_CPU_MMXEXT) || (cpu_flags & XVID_CPU_3DNOW) || (cpu_flags & XVID_CPU_3DNOWEXT) || (cpu_flags & XVID_CPU_SSE) || (cpu_flags & XVID_CPU_SSE2)) { /* Restore FPU context : emms_c is a nop functions */ emms = emms_mmx; } if ((cpu_flags & XVID_CPU_MMX)) { /* Forward and Inverse Discrete Cosine Transformation functions */ fdct = fdct_mmx; idct = idct_mmx; /* Quantization related functions */ quant_intra = quant_intra_mmx; dequant_intra = dequant_intra_mmx; quant_inter = quant_inter_mmx; dequant_inter = dequant_inter_mmx; quant4_intra = quant4_intra_mmx; dequant4_intra = dequant4_intra_mmx; quant4_inter = quant4_inter_mmx; dequant4_inter = dequant4_inter_mmx; /* Block related functions */ transfer_8to16copy = transfer_8to16copy_mmx; transfer_16to8copy = transfer_16to8copy_mmx; transfer_8to16sub = transfer_8to16sub_mmx; transfer_8to16subro = transfer_8to16subro_mmx; transfer_8to16sub2 = transfer_8to16sub2_mmx; transfer_16to8add = transfer_16to8add_mmx; transfer8x8_copy = transfer8x8_copy_mmx; /* Interlacing Functions */ MBFieldTest = MBFieldTest_mmx; /* Image Interpolation related functions */ interpolate8x8_halfpel_h = interpolate8x8_halfpel_h_mmx; interpolate8x8_halfpel_v = interpolate8x8_halfpel_v_mmx; interpolate8x8_halfpel_hv = interpolate8x8_halfpel_hv_mmx; interpolate8x8_6tap_lowpass_h = interpolate8x8_6tap_lowpass_h_mmx; interpolate8x8_6tap_lowpass_v = interpolate8x8_6tap_lowpass_v_mmx; interpolate8x8_avg2 = interpolate8x8_avg2_mmx; interpolate8x8_avg4 = interpolate8x8_avg4_mmx; /* reduced resolution */ copy_upsampled_8x8_16to8 = xvid_Copy_Upsampled_8x8_16To8_mmx; add_upsampled_8x8_16to8 = xvid_Add_Upsampled_8x8_16To8_mmx; hfilter_31 = xvid_HFilter_31_mmx; filter_18x18_to_8x8 = xvid_Filter_18x18_To_8x8_mmx; filter_diff_18x18_to_8x8 = xvid_Filter_Diff_18x18_To_8x8_mmx; /* image input xxx_to_yv12 related functions */ yv12_to_yv12 = yv12_to_yv12_mmx; bgr_to_yv12 = bgr_to_yv12_mmx; bgra_to_yv12 = bgra_to_yv12_mmx; yuyv_to_yv12 = yuyv_to_yv12_mmx; uyvy_to_yv12 = uyvy_to_yv12_mmx; /* image output yv12_to_xxx related functions */ yv12_to_bgr = yv12_to_bgr_mmx; yv12_to_bgra = yv12_to_bgra_mmx; yv12_to_yuyv = yv12_to_yuyv_mmx; yv12_to_uyvy = yv12_to_uyvy_mmx; yv12_to_yuyvi = yv12_to_yuyvi_mmx; yv12_to_uyvyi = yv12_to_uyvyi_mmx; /* Motion estimation related functions */ calc_cbp = calc_cbp_mmx; sad16 = sad16_mmx; sad8 = sad8_mmx; sad16bi = sad16bi_mmx; sad8bi = sad8bi_mmx; dev16 = dev16_mmx; sad16v = sad16v_mmx; } /* these 3dnow functions are faster than mmx, but slower than xmm. */ if ((cpu_flags & XVID_CPU_3DNOW)) { emms = emms_3dn; /* ME functions */ sad16bi = sad16bi_3dn; sad8bi = sad8bi_3dn; yuyv_to_yv12 = yuyv_to_yv12_3dn; uyvy_to_yv12 = uyvy_to_yv12_3dn; } if ((cpu_flags & XVID_CPU_MMXEXT)) { /* Inverse DCT */ idct = idct_xmm; /* Interpolation */ interpolate8x8_halfpel_h = interpolate8x8_halfpel_h_xmm; interpolate8x8_halfpel_v = interpolate8x8_halfpel_v_xmm; interpolate8x8_halfpel_hv = interpolate8x8_halfpel_hv_xmm; /* reduced resolution */ copy_upsampled_8x8_16to8 = xvid_Copy_Upsampled_8x8_16To8_xmm; add_upsampled_8x8_16to8 = xvid_Add_Upsampled_8x8_16To8_xmm; /* Quantization */ quant4_intra = quant4_intra_xmm; quant4_inter = quant4_inter_xmm; dequant_intra = dequant_intra_xmm; dequant_inter = dequant_inter_xmm; /* Buffer transfer */ transfer_8to16sub2 = transfer_8to16sub2_xmm; /* Colorspace transformation */ yv12_to_yv12 = yv12_to_yv12_xmm; yuyv_to_yv12 = yuyv_to_yv12_xmm; uyvy_to_yv12 = uyvy_to_yv12_xmm; /* ME functions */ sad16 = sad16_xmm; sad8 = sad8_xmm; sad16bi = sad16bi_xmm; sad8bi = sad8bi_xmm; dev16 = dev16_xmm; sad16v = sad16v_xmm; } if ((cpu_flags & XVID_CPU_3DNOW)) { /* Interpolation */ interpolate8x8_halfpel_h = interpolate8x8_halfpel_h_3dn; interpolate8x8_halfpel_v = interpolate8x8_halfpel_v_3dn; interpolate8x8_halfpel_hv = interpolate8x8_halfpel_hv_3dn; } if ((cpu_flags & XVID_CPU_3DNOWEXT)) { /* Inverse DCT */ idct = idct_3dne; /* Buffer transfer */ transfer_8to16copy = transfer_8to16copy_3dne; transfer_16to8copy = transfer_16to8copy_3dne; transfer_8to16sub = transfer_8to16sub_3dne; transfer_8to16subro = transfer_8to16subro_3dne; transfer_8to16sub2 = transfer_8to16sub2_3dne; transfer_16to8add = transfer_16to8add_3dne; transfer8x8_copy = transfer8x8_copy_3dne; /* Quantization */ dequant4_intra = dequant4_intra_3dne; dequant4_inter = dequant4_inter_3dne; quant_intra = quant_intra_3dne; quant_inter = quant_inter_3dne; dequant_intra = dequant_intra_3dne; dequant_inter = dequant_inter_3dne; /* ME functions */ calc_cbp = calc_cbp_3dne; sad16 = sad16_3dne; sad8 = sad8_3dne; sad16bi = sad16bi_3dne; sad8bi = sad8bi_3dne; dev16 = dev16_3dne; /* Interpolation */ interpolate8x8_halfpel_h = interpolate8x8_halfpel_h_3dne; interpolate8x8_halfpel_v = interpolate8x8_halfpel_v_3dne; interpolate8x8_halfpel_hv = interpolate8x8_halfpel_hv_3dne; } if ((cpu_flags & XVID_CPU_SSE2)) { calc_cbp = calc_cbp_sse2; /* Quantization */ quant_intra = quant_intra_sse2; dequant_intra = dequant_intra_sse2; quant_inter = quant_inter_sse2; dequant_inter = dequant_inter_sse2; #if defined(EXPERIMENTAL_SSE2_CODE) /* ME; slower than xmm */ sad16 = sad16_sse2; dev16 = dev16_sse2; #endif /* Forward and Inverse DCT */ idct = idct_sse2; fdct = fdct_sse2; } #endif #if defined(ARCH_IS_IA64) if ((cpu_flags & XVID_CPU_ASM)) { /* use assembler routines? */ idct_ia64_init(); fdct = fdct_ia64; idct = idct_ia64; /*not yet working, crashes */ interpolate8x8_halfpel_h = interpolate8x8_halfpel_h_ia64; interpolate8x8_halfpel_v = interpolate8x8_halfpel_v_ia64; interpolate8x8_halfpel_hv = interpolate8x8_halfpel_hv_ia64; sad16 = sad16_ia64; sad16bi = sad16bi_ia64; sad8 = sad8_ia64; dev16 = dev16_ia64; /* Halfpel8_Refine = Halfpel8_Refine_ia64; */ quant_intra = quant_intra_ia64; dequant_intra = dequant_intra_ia64; quant_inter = quant_inter_ia64; dequant_inter = dequant_inter_ia64; transfer_8to16copy = transfer_8to16copy_ia64; transfer_16to8copy = transfer_16to8copy_ia64; transfer_8to16sub = transfer_8to16sub_ia64; transfer_8to16sub2 = transfer_8to16sub2_ia64; transfer_16to8add = transfer_16to8add_ia64; transfer8x8_copy = transfer8x8_copy_ia64; DPRINTF(DPRINTF_DEBUG, "Using IA-64 assembler routines."); } #endif #if defined(ARCH_IS_PPC) if ((cpu_flags & XVID_CPU_ASM)) { calc_cbp = calc_cbp_ppc; } if ((cpu_flags & XVID_CPU_ALTIVEC)) { calc_cbp = calc_cbp_altivec; fdct = fdct_altivec; idct = idct_altivec; sadInit = sadInit_altivec; sad16 = sad16_altivec; sad8 = sad8_altivec; dev16 = dev16_altivec; } #endif return XVID_ERR_OK; } static int xvid_init_convert(XVID_INIT_CONVERTINFO* convert) { /* const int flip1 = (convert->input.colorspace & XVID_CSP_VFLIP) ^ (convert->output.colorspace & XVID_CSP_VFLIP); */ const int width = convert->width; const int height = convert->height; const int width2 = convert->width/2; const int height2 = convert->height/2; IMAGE img; switch (convert->input.colorspace & ~XVID_CSP_VFLIP) { case XVID_CSP_YV12 : img.y = convert->input.y; img.v = (uint8_t*)convert->input.y + width*height; img.u = (uint8_t*)convert->input.y + width*height + width2*height2; image_output(&img, width, height, width, convert->output.y, convert->output.y_stride, convert->output.colorspace, convert->interlacing); break; default : return XVID_ERR_FORMAT; } emms(); return XVID_ERR_OK; } void fill8(uint8_t * block, int size, int value) { int i; for (i = 0; i < size; i++) block[i] = value; } void fill16(int16_t * block, int size, int value) { int i; for (i = 0; i < size; i++) block[i] = value; } #define RANDOM(min,max) min + (rand() % (max-min)) void random8(uint8_t * block, int size, int min, int max) { int i; for (i = 0; i < size; i++) block[i] = RANDOM(min,max); } void random16(int16_t * block, int size, int min, int max) { int i; for (i = 0; i < size; i++) block[i] = RANDOM(min,max); } int compare16(const int16_t * blockA, const int16_t * blockB, int size) { int i; for (i = 0; i < size; i++) if (blockA[i] != blockB[i]) return 1; return 0; } int diff16(const int16_t * blockA, const int16_t * blockB, int size) { int i, diff = 0; for (i = 0; i < size; i++) diff += ABS(blockA[i]-blockB[i]); return diff; } #define XVID_TEST_RANDOM 0x00000001 /* random input data */ #define XVID_TEST_VERBOSE 0x00000002 /* verbose error output */ #define TEST_FORWARD 0x00000001 /* intra */ #define TEST_FDCT (TEST_FORWARD) #define TEST_IDCT (0) static int test_transform(void * funcA, void * funcB, const char * nameB, int test, int flags) { int i; int64_t timeSTART; int64_t timeA = 0; int64_t timeB = 0; DECLARE_ALIGNED_MATRIX(arrayA, 1, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(arrayB, 1, 64, int16_t, CACHE_LINE); int min, max; int count = 0; int tmp; int min_error = 0x10000*64; int max_error = 0; if ((test & TEST_FORWARD)) /* forward */ { min = -256; max = 255; }else{ /* inverse */ min = -2048; max = 2047; } for (i = 0; i < 64*64; i++) { if ((flags & XVID_TEST_RANDOM)) { random16(arrayA, 64, min, max); }else{ fill16(arrayA, 64, i); } memcpy(arrayB, arrayA, 64*sizeof(int16_t)); if ((test & TEST_FORWARD)) { timeSTART = read_counter(); ((fdctFunc*)funcA)(arrayA); timeA += read_counter() - timeSTART; timeSTART = read_counter(); ((fdctFunc*)funcB)(arrayB); timeB += read_counter() - timeSTART; } else { timeSTART = read_counter(); ((idctFunc*)funcA)(arrayA); timeA += read_counter() - timeSTART; timeSTART = read_counter(); ((idctFunc*)funcB)(arrayB); timeB += read_counter() - timeSTART; } tmp = diff16(arrayA, arrayB, 64) / 64; if (tmp > max_error) max_error = tmp; if (tmp < min_error) min_error = tmp; count++; } /* print the "average difference" of best/worst transforms */ printf("%s:\t%i\t(min_error:%i, max_error:%i)\n", nameB, (int)(timeB / count), min_error, max_error); return 0; } #define TEST_QUANT 0x00000001 /* forward quantization */ #define TEST_INTRA 0x00000002 /* intra */ #define TEST_QUANT_INTRA (TEST_QUANT|TEST_INTRA) #define TEST_QUANT_INTER (TEST_QUANT) #define TEST_DEQUANT_INTRA (TEST_INTRA) #define TEST_DEQUANT_INTER (0) static int test_quant(void * funcA, void * funcB, const char * nameB, int test, int flags) { int q,i; int64_t timeSTART; int64_t timeA = 0; int64_t timeB = 0; int retA = 0, retB = 0; DECLARE_ALIGNED_MATRIX(arrayX, 1, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(arrayA, 1, 64, int16_t, CACHE_LINE); DECLARE_ALIGNED_MATRIX(arrayB, 1, 64, int16_t, CACHE_LINE); int min, max; int count = 0; int errors = 0; if ((test & TEST_QUANT)) /* quant */ { min = -2048; max = 2047; }else{ /* dequant */ min = -256; max = 255; } for (q = 1; q <= 31; q++) /* quantizer */ { for (i = min; i < max; i++) /* input coeff */ { if ((flags & XVID_TEST_RANDOM)) { random16(arrayX, 64, min, max); }else{ fill16(arrayX, 64, i); } if ((test & TEST_INTRA)) /* intra */ { timeSTART = read_counter(); ((quanth263_intraFunc*)funcA)(arrayA, arrayX, q, q); timeA += read_counter() - timeSTART; timeSTART = read_counter(); ((quanth263_intraFunc*)funcB)(arrayB, arrayX, q, q); timeB += read_counter() - timeSTART; } else /* inter */ { timeSTART = read_counter(); retA = ((quanth263_interFunc*)funcA)(arrayA, arrayX, q); timeA += read_counter() - timeSTART; timeSTART = read_counter(); retB = ((quanth263_interFunc*)funcB)(arrayB, arrayX, q); timeB += read_counter() - timeSTART; } /* compare return value from quant_inter, and compare (de)quantiz'd arrays */ if ( ((test&TEST_QUANT) && !(test&TEST_INTRA) && retA != retB ) || compare16(arrayA, arrayB, 64)) { errors++; if ((flags & XVID_TEST_VERBOSE)) printf("%s error: q=%i, i=%i\n", nameB, q, i); } count++; } } printf("%s:\t%i", nameB, (int)(timeB / count)); if (errors>0) printf("\t(%i errors out of %i)", errors, count); printf("\n"); return 0; } int xvid_init_test(int flags) { int cpu_flags; srand(time(0)); printf("xvid_init_test\n"); #if defined(ARCH_IS_IA32) cpu_flags = detect_cpu_flags(); idct_int32_init(); emms_mmx(); printf("--- fdct ---\n"); test_transform(fdct_int32, fdct_int32, "c", TEST_FDCT, flags); if (cpu_flags & XVID_CPU_MMX) test_transform(fdct_int32, fdct_mmx, "mmx", TEST_FDCT, flags); if (cpu_flags & XVID_CPU_SSE2) test_transform(fdct_int32, fdct_sse2, "sse2", TEST_FDCT, flags); printf("\n--- idct ---\n"); test_transform(idct_int32, idct_int32, "c", TEST_IDCT, flags); if (cpu_flags & XVID_CPU_MMX) test_transform(idct_int32, idct_mmx, "mmx", TEST_IDCT, flags); if (cpu_flags & XVID_CPU_MMXEXT) test_transform(idct_int32, idct_xmm, "xmm", TEST_IDCT, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_transform(idct_int32, idct_3dne, "3dne", TEST_IDCT, flags); if (cpu_flags & XVID_CPU_SSE2) test_transform(idct_int32, idct_sse2, "sse2", TEST_IDCT, flags); printf("\n--- quant intra ---\n"); test_quant(quant_intra_c, quant_intra_c, "c", TEST_QUANT_INTRA, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(quant_intra_c, quant_intra_mmx, "mmx", TEST_QUANT_INTRA, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_quant(quant_intra_c, quant_intra_3dne, "3dne", TEST_QUANT_INTRA, flags); if (cpu_flags & XVID_CPU_SSE2) test_quant(quant_intra_c, quant_intra_sse2, "sse2", TEST_QUANT_INTRA, flags); printf("\n--- quant inter ---\n"); test_quant(quant_inter_c, quant_inter_c, "c", TEST_QUANT_INTER, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(quant_inter_c, quant_inter_mmx, "mmx", TEST_QUANT_INTER, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_quant(quant_inter_c, quant_inter_3dne, "3dne", TEST_QUANT_INTER, flags); if (cpu_flags & XVID_CPU_SSE2) test_quant(quant_inter_c, quant_inter_sse2, "sse2", TEST_QUANT_INTER, flags); printf("\n--- dequant intra ---\n"); test_quant(dequant_intra_c, dequant_intra_c, "c", TEST_DEQUANT_INTRA, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(dequant_intra_c, dequant_intra_mmx, "mmx", TEST_DEQUANT_INTRA, flags); if (cpu_flags & XVID_CPU_MMXEXT) test_quant(dequant_intra_c, dequant_intra_xmm, "xmm", TEST_DEQUANT_INTRA, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_quant(dequant_intra_c, dequant_intra_3dne, "3dne", TEST_DEQUANT_INTRA, flags); if (cpu_flags & XVID_CPU_SSE2) test_quant(dequant_intra_c, dequant_intra_sse2, "sse2", TEST_DEQUANT_INTRA, flags); printf("\n--- dequant inter ---\n"); test_quant(dequant_inter_c, dequant_inter_c, "c", TEST_DEQUANT_INTER, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(dequant_inter_c, dequant_inter_mmx, "mmx", TEST_DEQUANT_INTER, flags); if (cpu_flags & XVID_CPU_MMXEXT) test_quant(dequant_inter_c, dequant_inter_xmm, "xmm", TEST_DEQUANT_INTER, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_quant(dequant_inter_c, dequant_inter_3dne, "3dne", TEST_DEQUANT_INTER, flags); if (cpu_flags & XVID_CPU_SSE2) test_quant(dequant_inter_c, dequant_inter_sse2, "sse2", TEST_DEQUANT_INTER, flags); printf("\n--- quant4_intra ---\n"); test_quant(quant4_intra_c, quant4_intra_c, "c", TEST_QUANT_INTRA, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(quant4_intra_c, quant4_intra_mmx, "mmx", TEST_QUANT_INTRA, flags); if (cpu_flags & XVID_CPU_MMXEXT) test_quant(quant4_intra_c, quant4_intra_xmm, "xmm", TEST_QUANT_INTRA, flags); printf("\n--- quant4_inter ---\n"); test_quant(quant4_inter_c, quant4_inter_c, "c", TEST_QUANT_INTER, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(quant4_inter_c, quant4_inter_mmx, "mmx", TEST_QUANT_INTER, flags); if (cpu_flags & XVID_CPU_MMXEXT) test_quant(quant4_inter_c, quant4_inter_xmm, "xmm", TEST_QUANT_INTER, flags); printf("\n--- dequant4_intra ---\n"); test_quant(dequant4_intra_c, dequant4_intra_c, "c", TEST_DEQUANT_INTRA, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(dequant4_intra_c, dequant4_intra_mmx, "mmx", TEST_DEQUANT_INTRA, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_quant(dequant4_intra_c, dequant4_intra_3dne, "3dne", TEST_DEQUANT_INTRA, flags); printf("\n--- dequant4_inter ---\n"); test_quant(dequant4_inter_c, dequant4_inter_c, "c", TEST_DEQUANT_INTER, flags); if (cpu_flags & XVID_CPU_MMX) test_quant(dequant4_inter_c, dequant4_inter_mmx, "mmx", TEST_DEQUANT_INTER, flags); if (cpu_flags & XVID_CPU_3DNOWEXT) test_quant(dequant4_inter_c, dequant4_inter_3dne, "3dne", TEST_DEQUANT_INTER, flags); emms_mmx(); #endif return XVID_ERR_OK; } int xvid_init(void *handle, int opt, void *param1, void *param2) { switch(opt) { case XVID_INIT_INIT : return xvid_init_init((XVID_INIT_PARAM*)param1); case XVID_INIT_CONVERT : return xvid_init_convert((XVID_INIT_CONVERTINFO*)param1); case XVID_INIT_TEST : return xvid_init_test((int)param1); default : return XVID_ERR_FAIL; } } /***************************************************************************** * XviD Native decoder entry point * * This function is just a wrapper to all the option cases. * * Returned values : XVID_ERR_FAIL when opt is invalid * else returns the wrapped function result * ****************************************************************************/ int xvid_decore(void *handle, int opt, void *param1, void *param2) { switch (opt) { case XVID_DEC_DECODE: return decoder_decode((DECODER *) handle, (XVID_DEC_FRAME *) param1, (XVID_DEC_STATS*) param2); case XVID_DEC_CREATE: return decoder_create((XVID_DEC_PARAM *) param1); case XVID_DEC_DESTROY: return decoder_destroy((DECODER *) handle); default: return XVID_ERR_FAIL; } } /***************************************************************************** * XviD Native encoder entry point * * This function is just a wrapper to all the option cases. * * Returned values : XVID_ERR_FAIL when opt is invalid * else returns the wrapped function result * ****************************************************************************/ int xvid_encore(void *handle, int opt, void *param1, void *param2) { switch (opt) { case XVID_ENC_ENCODE: if (((Encoder *) handle)->mbParam.max_bframes >= 0) return encoder_encode_bframes((Encoder *) handle, (XVID_ENC_FRAME *) param1, (XVID_ENC_STATS *) param2); else return encoder_encode((Encoder *) handle, (XVID_ENC_FRAME *) param1, (XVID_ENC_STATS *) param2); case XVID_ENC_CREATE: return encoder_create((XVID_ENC_PARAM *) param1); case XVID_ENC_DESTROY: return encoder_destroy((Encoder *) handle); default: return XVID_ERR_FAIL; } }