ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvs/xvidcore/src/dct/fdct.c
Revision: 1.5
Committed: Tue Nov 26 23:44:10 2002 UTC (21 years, 10 months ago) by edgomez
Content type: text/plain
Branch: MAIN
CVS Tags: release-0_9_2, release-0_9_1
Branch point for: release-0_9_1-fixes
Changes since 1.4: +2 -2 lines
Log Message:
ANSI C compliancy - thx Rick Foos

File Contents

# User Rev Content
1 chl 1.3 /*****************************************************************************
2 Isibaar 1.1 *
3 chl 1.3 * XVID MPEG-4 VIDEO CODEC
4     * - fast disrete cosine transformation - integer C version
5     *
6     * These routines are from Independent JPEG Group's free JPEG software
7     * Copyright (C) 1991-1998, Thomas G. Lane (see the file README.IJG)
8     *
9 edgomez 1.4 * This file is part of XviD, a free MPEG-4 video encoder/decoder
10 chl 1.3 *
11 edgomez 1.4 * XviD is free software; you can redistribute it and/or modify it
12     * under the terms of the GNU General Public License as published by
13 chl 1.3 * the Free Software Foundation; either version 2 of the License, or
14     * (at your option) any later version.
15     *
16     * This program is distributed in the hope that it will be useful,
17     * but WITHOUT ANY WARRANTY; without even the implied warranty of
18     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19     * GNU General Public License for more details.
20     *
21     * You should have received a copy of the GNU General Public License
22     * along with this program; if not, write to the Free Software
23     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 edgomez 1.4 *
25     * Under section 8 of the GNU General Public License, the copyright
26     * holders of XVID explicitly forbid distribution in the following
27     * countries:
28     *
29     * - Japan
30     * - United States of America
31     *
32     * Linking XviD statically or dynamically with other modules is making a
33     * combined work based on XviD. Thus, the terms and conditions of the
34     * GNU General Public License cover the whole combination.
35     *
36     * As a special exception, the copyright holders of XviD give you
37     * permission to link XviD with independent modules that communicate with
38     * XviD solely through the VFW1.1 and DShow interfaces, regardless of the
39     * license terms of these independent modules, and to copy and distribute
40     * the resulting combined work under terms of your choice, provided that
41     * every copy of the combined work is accompanied by a complete copy of
42     * the source code of XviD (the version of XviD used to produce the
43     * combined work), being distributed under the terms of the GNU General
44     * Public License plus this exception. An independent module is a module
45     * which is not derived from or based on XviD.
46     *
47     * Note that people who make modified versions of XviD are not obligated
48     * to grant this special exception for their modified versions; it is
49     * their choice whether to do so. The GNU General Public License gives
50     * permission to release a modified version without this exception; this
51     * exception also makes it possible to release a modified version which
52     * carries forward this exception.
53     *
54 edgomez 1.5 * $Id: fdct.c,v 1.4 2002/11/16 23:51:58 edgomez Exp $
55 chl 1.3 *
56     *************************************************************************/
57 Isibaar 1.1
58     /* This routine is a slow-but-accurate integer implementation of the
59     * forward DCT (Discrete Cosine Transform). Taken from the IJG software
60     *
61     * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
62     * on each column. Direct algorithms are also available, but they are
63     * much more complex and seem not to be any faster when reduced to code.
64     *
65     * This implementation is based on an algorithm described in
66     * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
67     * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
68     * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
69     * The primary algorithm described there uses 11 multiplies and 29 adds.
70     * We use their alternate method with 12 multiplies and 32 adds.
71     * The advantage of this method is that no data path contains more than one
72     * multiplication; this allows a very simple and accurate implementation in
73     * scaled fixed-point arithmetic, with a minimal number of shifts.
74     *
75     * The poop on this scaling stuff is as follows:
76     *
77     * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
78     * larger than the true DCT outputs. The final outputs are therefore
79     * a factor of N larger than desired; since N=8 this can be cured by
80     * a simple right shift at the end of the algorithm. The advantage of
81     * this arrangement is that we save two multiplications per 1-D DCT,
82     * because the y0 and y4 outputs need not be divided by sqrt(N).
83     * In the IJG code, this factor of 8 is removed by the quantization step
84     * (in jcdctmgr.c), here it is removed.
85     *
86     * We have to do addition and subtraction of the integer inputs, which
87     * is no problem, and multiplication by fractional constants, which is
88     * a problem to do in integer arithmetic. We multiply all the constants
89     * by CONST_SCALE and convert them to integer constants (thus retaining
90     * CONST_BITS bits of precision in the constants). After doing a
91     * multiplication we have to divide the product by CONST_SCALE, with proper
92     * rounding, to produce the correct output. This division can be done
93     * cheaply as a right shift of CONST_BITS bits. We postpone shifting
94     * as long as possible so that partial sums can be added together with
95     * full fractional precision.
96     *
97     * The outputs of the first pass are scaled up by PASS1_BITS bits so that
98     * they are represented to better-than-integral precision. These outputs
99     * require 8 + PASS1_BITS + 3 bits; this fits in a 16-bit word
100     * with the recommended scaling. (For 12-bit sample data, the intermediate
101     * array is INT32 anyway.)
102     *
103     * To avoid overflow of the 32-bit intermediate results in pass 2, we must
104     * have 8 + CONST_BITS + PASS1_BITS <= 26. Error analysis
105     * shows that the values given below are the most effective.
106     *
107     * We can gain a little more speed, with a further compromise in accuracy,
108     * by omitting the addition in a descaling shift. This yields an incorrectly
109     * rounded result half the time...
110     */
111    
112     #include "fdct.h"
113    
114     #define USE_ACCURATE_ROUNDING
115    
116     #define RIGHT_SHIFT(x, shft) ((x) >> (shft))
117    
118     #ifdef USE_ACCURATE_ROUNDING
119     #define ONE ((int) 1)
120     #define DESCALE(x, n) RIGHT_SHIFT((x) + (ONE << ((n) - 1)), n)
121     #else
122     #define DESCALE(x, n) RIGHT_SHIFT(x, n)
123     #endif
124    
125     #define CONST_BITS 13
126     #define PASS1_BITS 2
127    
128     #define FIX_0_298631336 ((int) 2446) /* FIX(0.298631336) */
129     #define FIX_0_390180644 ((int) 3196) /* FIX(0.390180644) */
130     #define FIX_0_541196100 ((int) 4433) /* FIX(0.541196100) */
131     #define FIX_0_765366865 ((int) 6270) /* FIX(0.765366865) */
132     #define FIX_0_899976223 ((int) 7373) /* FIX(0.899976223) */
133     #define FIX_1_175875602 ((int) 9633) /* FIX(1.175875602) */
134     #define FIX_1_501321110 ((int) 12299) /* FIX(1.501321110) */
135     #define FIX_1_847759065 ((int) 15137) /* FIX(1.847759065) */
136     #define FIX_1_961570560 ((int) 16069) /* FIX(1.961570560) */
137     #define FIX_2_053119869 ((int) 16819) /* FIX(2.053119869) */
138     #define FIX_2_562915447 ((int) 20995) /* FIX(2.562915447) */
139     #define FIX_3_072711026 ((int) 25172) /* FIX(3.072711026) */
140    
141 edgomez 1.5 /* function pointer */
142 Isibaar 1.1 fdctFuncPtr fdct;
143    
144     /*
145     * Perform an integer forward DCT on one block of samples.
146     */
147    
148 edgomez 1.2 void
149     fdct_int32(short *const block)
150 Isibaar 1.1 {
151 edgomez 1.2 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
152     int tmp10, tmp11, tmp12, tmp13;
153     int z1, z2, z3, z4, z5;
154     short *blkptr;
155     int *dataptr;
156     int data[64];
157     int i;
158    
159     /* Pass 1: process rows. */
160     /* Note results are scaled up by sqrt(8) compared to a true DCT; */
161     /* furthermore, we scale the results by 2**PASS1_BITS. */
162    
163     dataptr = data;
164     blkptr = block;
165     for (i = 0; i < 8; i++) {
166     tmp0 = blkptr[0] + blkptr[7];
167     tmp7 = blkptr[0] - blkptr[7];
168     tmp1 = blkptr[1] + blkptr[6];
169     tmp6 = blkptr[1] - blkptr[6];
170     tmp2 = blkptr[2] + blkptr[5];
171     tmp5 = blkptr[2] - blkptr[5];
172     tmp3 = blkptr[3] + blkptr[4];
173     tmp4 = blkptr[3] - blkptr[4];
174    
175     /* Even part per LL&M figure 1 --- note that published figure is faulty;
176     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
177     */
178    
179     tmp10 = tmp0 + tmp3;
180     tmp13 = tmp0 - tmp3;
181     tmp11 = tmp1 + tmp2;
182     tmp12 = tmp1 - tmp2;
183    
184     dataptr[0] = (tmp10 + tmp11) << PASS1_BITS;
185     dataptr[4] = (tmp10 - tmp11) << PASS1_BITS;
186    
187     z1 = (tmp12 + tmp13) * FIX_0_541196100;
188     dataptr[2] =
189     DESCALE(z1 + tmp13 * FIX_0_765366865, CONST_BITS - PASS1_BITS);
190     dataptr[6] =
191     DESCALE(z1 + tmp12 * (-FIX_1_847759065), CONST_BITS - PASS1_BITS);
192    
193     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
194     * cK represents cos(K*pi/16).
195     * i0..i3 in the paper are tmp4..tmp7 here.
196     */
197    
198     z1 = tmp4 + tmp7;
199     z2 = tmp5 + tmp6;
200     z3 = tmp4 + tmp6;
201     z4 = tmp5 + tmp7;
202     z5 = (z3 + z4) * FIX_1_175875602; /* sqrt(2) * c3 */
203    
204     tmp4 *= FIX_0_298631336; /* sqrt(2) * (-c1+c3+c5-c7) */
205     tmp5 *= FIX_2_053119869; /* sqrt(2) * ( c1+c3-c5+c7) */
206     tmp6 *= FIX_3_072711026; /* sqrt(2) * ( c1+c3+c5-c7) */
207     tmp7 *= FIX_1_501321110; /* sqrt(2) * ( c1+c3-c5-c7) */
208     z1 *= -FIX_0_899976223; /* sqrt(2) * (c7-c3) */
209     z2 *= -FIX_2_562915447; /* sqrt(2) * (-c1-c3) */
210     z3 *= -FIX_1_961570560; /* sqrt(2) * (-c3-c5) */
211     z4 *= -FIX_0_390180644; /* sqrt(2) * (c5-c3) */
212    
213     z3 += z5;
214     z4 += z5;
215    
216     dataptr[7] = DESCALE(tmp4 + z1 + z3, CONST_BITS - PASS1_BITS);
217     dataptr[5] = DESCALE(tmp5 + z2 + z4, CONST_BITS - PASS1_BITS);
218     dataptr[3] = DESCALE(tmp6 + z2 + z3, CONST_BITS - PASS1_BITS);
219     dataptr[1] = DESCALE(tmp7 + z1 + z4, CONST_BITS - PASS1_BITS);
220    
221     dataptr += 8; /* advance pointer to next row */
222     blkptr += 8;
223     }
224    
225     /* Pass 2: process columns.
226     * We remove the PASS1_BITS scaling, but leave the results scaled up
227     * by an overall factor of 8.
228     */
229    
230     dataptr = data;
231     for (i = 0; i < 8; i++) {
232     tmp0 = dataptr[0] + dataptr[56];
233     tmp7 = dataptr[0] - dataptr[56];
234     tmp1 = dataptr[8] + dataptr[48];
235     tmp6 = dataptr[8] - dataptr[48];
236     tmp2 = dataptr[16] + dataptr[40];
237     tmp5 = dataptr[16] - dataptr[40];
238     tmp3 = dataptr[24] + dataptr[32];
239     tmp4 = dataptr[24] - dataptr[32];
240    
241     /* Even part per LL&M figure 1 --- note that published figure is faulty;
242     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
243     */
244    
245     tmp10 = tmp0 + tmp3;
246     tmp13 = tmp0 - tmp3;
247     tmp11 = tmp1 + tmp2;
248     tmp12 = tmp1 - tmp2;
249    
250     dataptr[0] = DESCALE(tmp10 + tmp11, PASS1_BITS);
251     dataptr[32] = DESCALE(tmp10 - tmp11, PASS1_BITS);
252    
253     z1 = (tmp12 + tmp13) * FIX_0_541196100;
254     dataptr[16] =
255     DESCALE(z1 + tmp13 * FIX_0_765366865, CONST_BITS + PASS1_BITS);
256     dataptr[48] =
257     DESCALE(z1 + tmp12 * (-FIX_1_847759065), CONST_BITS + PASS1_BITS);
258    
259     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
260     * cK represents cos(K*pi/16).
261     * i0..i3 in the paper are tmp4..tmp7 here.
262     */
263    
264     z1 = tmp4 + tmp7;
265     z2 = tmp5 + tmp6;
266     z3 = tmp4 + tmp6;
267     z4 = tmp5 + tmp7;
268     z5 = (z3 + z4) * FIX_1_175875602; /* sqrt(2) * c3 */
269    
270     tmp4 *= FIX_0_298631336; /* sqrt(2) * (-c1+c3+c5-c7) */
271     tmp5 *= FIX_2_053119869; /* sqrt(2) * ( c1+c3-c5+c7) */
272     tmp6 *= FIX_3_072711026; /* sqrt(2) * ( c1+c3+c5-c7) */
273     tmp7 *= FIX_1_501321110; /* sqrt(2) * ( c1+c3-c5-c7) */
274     z1 *= -FIX_0_899976223; /* sqrt(2) * (c7-c3) */
275     z2 *= -FIX_2_562915447; /* sqrt(2) * (-c1-c3) */
276     z3 *= -FIX_1_961570560; /* sqrt(2) * (-c3-c5) */
277     z4 *= -FIX_0_390180644; /* sqrt(2) * (c5-c3) */
278    
279     z3 += z5;
280     z4 += z5;
281    
282     dataptr[56] = DESCALE(tmp4 + z1 + z3, CONST_BITS + PASS1_BITS);
283     dataptr[40] = DESCALE(tmp5 + z2 + z4, CONST_BITS + PASS1_BITS);
284     dataptr[24] = DESCALE(tmp6 + z2 + z3, CONST_BITS + PASS1_BITS);
285     dataptr[8] = DESCALE(tmp7 + z1 + z4, CONST_BITS + PASS1_BITS);
286    
287     dataptr++; /* advance pointer to next column */
288     }
289     /* descale */
290     for (i = 0; i < 64; i++)
291     block[i] = (short int) DESCALE(data[i], 3);
292 Isibaar 1.1 }